ERU chokes

ERUC23, SMT flat wire coupled inductor

Series/Type: ERUC23
Date: June 2023
ERU Chokes

ERUC23, SMT flat wire coupled inductor

ERU Coupled inductor

Construction
- Low loss ferrite
- Flat wire winding
- Self-leaded construction

Features
- High saturation current
- Low DC resistance
- RoHS-compatible
- Compact coupled inductors
- AEC-Q200 qualified

Applications
- Dual phase Buck, Boost, and Buck-Boost converters
- 48 V\textsubscript{in} – 12 V\textsubscript{out} hybrid converter

Terminals
- Lead-free tinned

Marking
- Manufacturer, ordering code, date of manufacture, production place, pin one and location (YYWWD/X)

Delivery mode
- Blister tape

Packing unit
- 150 pcs./reel
- 4 reels/carton box
ERU Chokes

ERUC23

ERUC23, SMT flat wire coupled inductor

ERU Coupled inductor

Dimensional drawing

Top view

26.8 max.

13.8±0.3

H

Marking

4x 2

4x 0.15 CZ

All dimensions in mm

Recommended PCB layout

(Top view)

7.9

7.9

7.9

4x 3.7

1

2

3

14

4

IND2084-R-E

IND2085-S-E

Circuit diagram

4

3

1

2

IND2086-T

Please read Cautions and warnings and Important notes at the end of this document.
Technical data and measuring conditions

Rated inductance L_3
$\pm 10\%, 100$ kHz, 100 mV, $+25$ °C, Pins 2-4 with 1-3 shorted

Rated inductance L_2
$\pm 15\%, 100$ kHz, 100 mV, $+25$ °C, Pins 1-4

Rated inductance L_1
$\pm 15\%, 100$ kHz, 100 mV, $+25$ °C, Pins 2-3

Saturation current $I_{\text{sat-typ}}$
DC current with inductance decrease of L_3 by approximately 20%

Saturation current $I_{\text{sat-max}}$
DC current with causes L_3 to decrease by approximately 20% at L_3‘s maximum value

Rated current $I_{\text{temp-typ}}$
Current that will cause a $\Delta 40$°K self-heating at room temperature

DC resistance $R_{\text{DC1(4-1)}} = R_{\text{DC2(2-3)}}$
$\pm 7\%$, measured at $+25$ °C

High voltage: N1 to core
200 V DC

High voltage: N2 to core
200 V DC

Weight
Approx. 18.6 g

Solderability
(test of wettability of the pins)
(245 ± 5) °C, (3 ± 0.3) s,
Wetting of soldering area $\geq 95\%$
(based on IEC 60068-2-58, solder bath method)

Resistance to soldering heat
To JEDEC J-STD 020E (Tc: $+245$ °C on pin)

Operating temperature
– 40 °C … $+150$ °C (component)

Storage conditions (packaged)
– 25 °C … $+40$ °C, $\leq 75\%$ RH

Characteristics and ordering codes

<table>
<thead>
<tr>
<th>L_3</th>
<th>$I_{\text{sat-max}}$</th>
<th>$I_{\text{sat-typ}}$</th>
<th>$I_{\text{sat-typ}}$</th>
<th>$I_{\text{temp-typ}}$</th>
<th>L_1, L_2</th>
<th>R_{DC1}, R_{DC2}</th>
<th>Height</th>
<th>Internal code</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom</td>
<td>25 °C</td>
<td>25 °C</td>
<td>100 °C</td>
<td>nom</td>
<td>μH</td>
<td>mΩ</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μH</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>μH</td>
<td>± 0.3</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>45</td>
<td>50</td>
<td>39.5</td>
<td>24</td>
<td>7.9</td>
<td>1.85</td>
<td>13.7</td>
<td>B82559S6412M023</td>
<td>ERUC23-4R1K</td>
</tr>
<tr>
<td>3.2</td>
<td>57.5</td>
<td>63.5</td>
<td>49</td>
<td>24</td>
<td>5.9</td>
<td>1.85</td>
<td>13.7</td>
<td>B82559S6322M023</td>
<td>ERUC23-3R2K</td>
</tr>
<tr>
<td>2.8</td>
<td>55</td>
<td>61</td>
<td>47</td>
<td>27</td>
<td>5.4</td>
<td>1.25</td>
<td>13.8</td>
<td>B82559S5282M023</td>
<td>ERUC23-2R8K</td>
</tr>
<tr>
<td>2.2</td>
<td>71</td>
<td>77</td>
<td>58</td>
<td>27</td>
<td>4.1</td>
<td>1.25</td>
<td>13.8</td>
<td>B82559S5222M023</td>
<td>ERUC23-2R2K</td>
</tr>
<tr>
<td>1.8</td>
<td>73</td>
<td>81</td>
<td>62</td>
<td>33</td>
<td>3.5</td>
<td>0.82</td>
<td>14.0</td>
<td>B82559S4182M023</td>
<td>ERUC23-1R8K</td>
</tr>
<tr>
<td>1.4</td>
<td>88</td>
<td>97</td>
<td>73</td>
<td>33</td>
<td>2.6</td>
<td>0.82</td>
<td>14.0</td>
<td>B82559S4142M023</td>
<td>ERUC23-1R4K</td>
</tr>
</tbody>
</table>

Please read Cautions and warnings and Important notes at the end of this document.
Saturation characteristic (typical)

ERUC23-4R1K (L₃)

ERUC23-3R2K (L₃)

ERUC23-2R8K (L₃)

ERUC23-2R2K (L₃)
Please read Cautions and warnings and Important notes at the end of this document.
Application note
This coupled inductor can replace two single inductors in interleaved DC/DC circuits to improve efficiency and save space.

1) Simplified equivalent circuit for simulation

\[L_k = 0.5 \cdot L_3 \]
\[L_m = L_2 \text{ (or } L_1) - 0.5 \cdot L_3 \]
Example: ERUC23-4R1K (4.1 \(\mu \)H)
\[R_{DC} = 1.85 \text{ m}\Omega \]
\[L_k = 2.05 \mu \text{H} \]
\[L_m = 5.85 \mu \text{H} \]

2) Connection
Single inductors do not have polarity, but the connection is important to get the right performance for a coupled inductor, an incorrect connection would diminish the performance. In short, pin 1 & 2 should have the same functionality, pin 3 & 4 have the same functionality. For example in a buck circuit with two interleaved phases, if pin 1 and pin 2 are connected with switching devices such as mosfets, then pin 3 and pin 4 should be connected to the output as shown below.

The inductor is not limited to only buck topology but, can be considered in boost or buck-boost topology.

3) Saturation current margin consideration
For consideration of saturation current margin, \(L_m \) can be considered as zero inductance so that it would be equivalent to two single inductors with inductance \(L_k \) to calculate the \(I_{peak} \) to compare with specified saturation current of \(L_3 \).
Example: ERUC23-4R1K (4.1 \(\mu \)H)
Use 2 individual 2.05 \(\mu \)H inductors to calculate the maximum peak current to compare with the saturation current listed in above table.
4) Loop stability consideration

For consideration of loop stability, L_m can be considered as zero inductance such that it would be equivalent to two individual inductors with inductance L_k for loop compensation.

Example: ERUC23-4R1K (4.1 μH)

Loop compensation for this inductor is same as circuit with two individual 2.05 μH inductors.

5) R_{dc} Current Sensing with RC filter

For R_{dc} current sensing in a coupled inductor, the calculation is $R_s \cdot C_s = L_k / R_{dc}$.

L_m does not affect the R_{dc} current sensing signal (the current signal on C_s is based on a ripple current of L_k with $L_m = 0$).

Example: ERUC23-4R1K (4.1 μH)

$R_s \cdot C_s = 2.05 \mu$H / 1.85 mΩ
Blister tape and reel (mm)

Blister tape

User direction of unreeling

Plastic reel
Cautions and warnings

Please note the recommendations in our Inductors data book (latest edition), online catalogs and in the data sheets.

- Particular attention should be paid to the derating curves, if given. Derating applies in the case the ambient temperature in application exceeds the rated temperature of the component.
- Ensure the operation temperature of the component in application, not to exceed the maximum specified value or the upper climatic category temperature.
- The soldering conditions should also be observed. Temperatures quoted in relation to wave soldering refer to the pin, not the housing.

If the components are to be washed varnished it is necessary to check whether the washing varnish agent that is used has a negative effect on the wire insulation, any plastics that are used, or on glued joints. It is possible for washing varnish agent residues to have a negative effect in the long-term on wire insulation.

Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g., ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime.

The following points must be observed if the components are potted, sealed, or varnished in customer applications:

- Many potting, sealing of varnishing materials shrink as they harden. They therefore exert a pressure on the plastic housing or core. This pressure can have a deleterious effect on electrical properties, and in extreme cases can damage the core or plastic housing mechanically.
- It is necessary to check whether the potting, sealing or varnishing materials used attacks or destroys the wire insulation, plastics, or glue.
- The effect of the potting, sealing, or varnishing materials may change the high-frequency behavior of the components.

Magnetic core materials such as ferrites are sensitive to direct impact. This can cause the core material to flake or lead to breakage of the magnetic core material.

Any type of tension or pressure on the product may result in damage and affect its functionality and reliability.

- The products are only to be attached to fixings or mounting holes provided for this purpose in accordance with the data sheet.
- If additional mechanical forces are applied to the component, e.g., application of gap pads, it is necessary to check whether they attack or destroy any part of the component.
- It is not permitted for the product specified in the data sheet to assume a mechanical function in the final application.

Inductance value can drop if external metallic or magnetic parts will be put close to the coil or into the air gap of the coil or core or magnetic material.

Even for customer-specific products, conclusive validation of the component in the circuit can only be carried out by the customer.

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.

Please read Cautions and warnings and Important notes at the end of this document.
The following applies to all products named in this publication:

1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.

2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.

3. The warnings, cautions and product-specific notes must be observed.

4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.

5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
7. **Our manufacturing sites serving the automotive business apply the IATF 16949 standard.** The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements (“CSR”) TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

8. The trade names EPCOS, CarXield, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, InsuGate, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2022-07