

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

Series/Type: B32754 ... B32758

Date: February 2021

© TDK Electronics AG 2021. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

MKP AC filtering

Typical applications

 Output AC filtering for power converters, UPS, motor drives

Climatic

- Max. operating temperature: 105 °C
- Climatic category (IEC 60068-1:2013): 40/105/56

Construction

- Dielectric: Polypropylene (PP)
- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL 94 V-0)

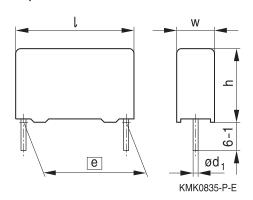
Features

- THB Grade III Test A (refer to IEC60384-14:2013/AMD1:2016)
- Optimized AC voltage performance
- High ripple current/frequency handling capability
- AEC-Q200D compliant
- UL 810 construction
- For PCB mounting

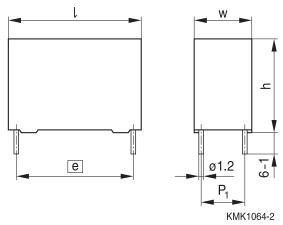
Terminals

- Parallel wire leads, lead-free tinned
- 2-pin and 4-pin versions
- Standard lead lengths: 6 -1 mm
- Special lead lengths available on request

Marking


Manufacturer's logo, lot number, series number, rated capacitance (code), capacitance tolerance (code with letter), rated AC voltage, date of manufacture (code), approval

Delivery mode


Bulk (untaped, lead length 6-1 mm)

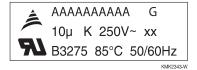
Dimensional drawings

2-pin version

4-pin version

Dimensions in mm

Version	Lead spacing e ±0.4	Lead diameter d ₁ ±0.05	Туре
2-pin	27.5	0.8	B32754C
2-pin	37.5	1.0	B32756C
4-pin	37.5	1.01)/1.2	B32756G
4-pin	52.5	1.2	B32758G


¹⁾ For box dimensions $22.0 \times 45.0 \times 42.0$ mm

Marking example (position of marks can vary)

Ordering code examples

В	3275	4	С	3	105	K
Components	Series	Lead space	Pin	Rated voltage	Rated	Capacitance
class		(mm)	number		capacitance	tolerance
Passive	MKP	4 = 27.5	C = 2 pins	2 = 250 V AC	105 = 1000 nF	J = ±5%
components		6 = 37.5	G = 4 pins	3 = 310 V AC	= 1.0 μF	$K = \pm 10\%$
		8 = 52.5		4 = 400 V AC		+ = K or J
				7 = 275 V AC		
				8 = 350 V AC		

Voltage ratings

$V_{R, DC}$	500 V DC	550 V DC	580 V DC	580 V DC	800 V DC
V _{R, AC}	350 V AC	380 V AC	430 V AC	480 V AC	560 V AC
V _{RMS}	250 V AC	275 V AC	310 V AC	350 V AC	400 V AC

Note:

 $V_{\text{R, AC}}$ is maximum operating peak recurrent voltage of either polarity of a reversing type waveform, not an RMS value.

Approval

Approval	Standards	Certificate
mark		
c Al us	UL 810 (construction only)	E323128, Vol 1



MKP AC filtering

Overview of available types

Lead spacing	27.5 mm			37.5	37.5 mm			52.5 mm							
Туре	B327	754				B327	B32756			B32758					
Page	5					7				9					
V _{RMS} (V AC)	250	275	310	350	400	250	275	310	350	400	250	275	310	350	400
$C_R (\mu F)$															
1.0															
1.5															
2.0															
2.5															
3.0															
3.5															
4.0															
4.5															
5.0															
6.0															
7.0															
8.0															
9.0															
10															
12 14															
14															
15															
20															
22															
25															
30															
33															
35															
40															
45															
50															
55															
60															
65															
70															

Ordering codes and packing units (lead spacing 27.5 mm)

$\overline{V_{RMS}}$	V_R	$C_R^{1)}$	Max. dimensions	P ₁	Ordering code	I _{RMS} ²⁾	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	85 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
250	500	1.0	$11.0 \times 19.0 \times 31.5$	_	B32754C2105+000	3.5	21.9	2352
		2.0	$12.5 \times 21.5 \times 31.5$	_	B32754C2205+000	5.0	12.2	2100
		3.0	$14.0 \times 24.5 \times 31.5$	_	B32754C2305K000	6.5	8.7	1848
		4.0	$16.0 \times 32.0 \times 31.5$	_	B32754C2405+000	8.5	6.1	1064
		5.0	$16.0 \times 32.0 \times 31.5$	_	B32754C2505+000	9.0	5.4	1064
		6.0	$18.0 \times 33.0 \times 31.5$	_	B32754C2605+000	10.5	4.6	952
		7.0	$22.0 \times 36.5 \times 31.5$	_	B32754C2705+000	12.5	3.8	784
		8.0	$22.0 \times 36.5 \times 31.5$	_	B32754C2805+000	13.0	3.6	784
		9.0	$22.0 \times 36.5 \times 31.5$	_	B32754C2905+000	13.5	3.4	784
		10	$22.0 \times 36.5 \times 31.5$	_	B32754C2106K000	13.5	3.2	784
		12	$22.0 \times 48.0 \times 31.5$	_	B32754C2126+000	14.0	3.0	320
		14	$22.0 \times 48.0 \times 31.5$	_	B32754C2146K000	14.0	2.8	320
275	550	1.0	$11.0 \times 19.0 \times 31.5$	_	B32754C7105+000	3.5	21.3	2352
		1.5	$12.5 \times 21.5 \times 31.5$	_	B32754C7155+000	4.5	14.4	2100
		2.0	$13.5 \times 23.0 \times 31.5$	_	B32754C7205+000	5.5	10.9	1932
		2.5	$15.0 \times 24.5 \times 31.5$	_	B32754C7255+000	6.5	8.9	1680
		3.0	$16.0 \times 32.0 \times 31.5$	_	B32754C7305+000	8.0	7.1	1064
		4.0	$16.0 \times 32.0 \times 31.5$	_	B32754C7405+000	8.5	6.0	1064
		5.0	$18.0 \times 33.0 \times 31.5$	_	B32754C7505K000	10.0	5.0	952
		6.0	$22.0 \times 36.5 \times 31.5$	_	B32754C7605+000	12.0	4.1	784
		7.0	$22.0 \times 36.5 \times 31.5$	_	B32754C7705+000	12.5	3.7	784
		8.0	$22.0 \times 48.0 \times 31.5$	_	B32754C7805+000	13.0	3.4	320
		9.0	$22.0 \times 48.0 \times 31.5$	_	B32754C7905+000	13.5	3.4	320
		10	$22.0 \times 48.0 \times 31.5$	_	B32754C7106+000	14.0	3.1	320

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 85 °C, 10 kHz for $\Delta T \leq$ 15 °C at $\Delta ESR_{typ} \leq \pm 5$ %

MKP AC filtering

Ordering codes and packing units (lead spacing 27.5 mm)

V_{RMS}	V_R	$C_R^{3)}$	Max. dimensions	P ₁	Ordering code	I _{RMS} ⁴⁾	ESR _{typ}	Untaped
			$w \times h \times I$		(composition see	85 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
310	580	1.0	$11.0 \times 21.0 \times 31.5$	_	B32754C3105+000	4.0	20.3	2352
		1.5	$13.5 \times 23.0 \times 31.5$	_	B32754C3155+000	5.0	13.6	1932
		2.0	$14.0 \times 24.5 \times 31.5$	_	B32754C3205K000	6.0	10.9	1848
		2.5	$16.0 \times 32.0 \times 31.5$	_	B32754C3255+000	7.0	8.3	1064
		3.0	$18.0 \times 27.5 \times 31.5$	_	B32754C3305+000	8.0	7.0	1428
		3.5	$18.0 \times 33.0 \times 31.5$	_	B32754C3355+000	9.0	6.2	952
		4.0	$19.0 \times 30.0 \times 31.5$	_	B32754C3405K000	9.5	5.8	896
		4.5	$21.0 \times 31.0 \times 31.5$	_	B32754C3455+000	10.0	5.1	784
		5.0	$22.0 \times 36.5 \times 31.5$	_	B32754C3505+000	11.0	4.6	784
		6.0	$22.0 \times 36.5 \times 31.5$	_	B32754C3605K000	12.0	4.1	784
		7.0	$22.0 \times 48.0 \times 31.5$	_	B32754C3705+000	13.0	4.0	320
		8.0	$22.0 \times 48.0 \times 31.5$	_	B32754C3805+000	14.0	3.4	320
		9.0	$22.0 \times 48.0 \times 31.5$	_	B32754C3905K000	14.0	3.3	320
350	580	1.0	$11.0 \times 21.0 \times 31.5$	_	B32754C8105+000	5.0	11.7	2352
		1.5	$13.5 \times 23.0 \times 31.5$	_	B32754C8155+000	6.0	8.0	1932
		2.0	$15.0 \times 24.5 \times 31.5$	_	B32754C8205K000	7.5	6.4	1680
		2.5	$16.0 \times 32.0 \times 31.5$	_	B32754C8255+000	9.0	5.0	1064
		3.0	$18.0 \times 33.0 \times 31.5$	_	B32754C8305+000	10.5	4.3	952
		3.5	$18.0 \times 33.0 \times 31.5$	_	B32754C8355+000	11.0	3.9	952
		4.0	$21.0 \times 31.0 \times 31.5$	_	B32754C8405K000	11.5	3.6	784
		4.5	$22.0 \times 36.5 \times 31.5$	_	B32754C8455+000	12.0	3.2	784
		5.0	$22.0 \times 36.5 \times 31.5$	_	B32754C8505+000	13.0	3.0	784
		6.0	$22.0 \times 48.0 \times 31.5$	_	B32754C8605+000	14.0	2.8	320
		7.0	$22.0 \times 48.0 \times 31.5$	_	B32754C8705+000	14.0	2.6	320
400	800	1.0	$14.0 \times 24.5 \times 31.5$	_	B32754C4105K000	6.0	9.5	1848
		1.5	$18.0 \times 27.5 \times 31.5$	_	B32754C4155+000	8.0	6.4	1428
		2.0	$21.0 \times 31.0 \times 31.5$	_	B32754C4205+000	10.0	4.9	784
		2.5	$22.0 \times 36.5 \times 31.5$	_	B32754C4255+000	12.0	4.2	784
		3.0	$22.0 \times 36.5 \times 31.5$	_	B32754C4305K000	13.0	3.8	784
		4.0	$22.0 \times 48.0 \times 31.5$	_	B32754C4405+000	14.0	3.2	320

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

³⁾ Capacitance value measured at 1 kHz

⁴⁾ Max. ripple current I_{RMS} at 85 $^{\circ}$ C, 10 kHz for Δ T \leq 15 $^{\circ}$ C at Δ ESR_{typ} \leq ±5 %

Ordering codes and packing units (lead spacing 37.5 mm)

$\overline{V_{RMS}}$	V_R	$C_R^{1)}$	Max. dimensions	P ₁	Ordering code	I _{RMS} ²⁾	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	85 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
250	500	5.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2505+000	8.0	7.6	720
		6.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2605+000	9.0	6.5	720
		7.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2705+000	9.0	6.1	720
		8.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2805+000	10.0	5.9	720
		9.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2905+000	10.5	5.3	720
		10	$20.0 \times 39.5 \times 42.0$	10.2	B32756G2106+000	13.0	4.1	640
		12	$20.0 \times 39.5 \times 42.0$	10.2	B32756G2126+000	14.0	3.8	640
		15	$22.0 \times 45.0 \times 42.0$	10.2	B32756G2156+000	15.0	3.2	560
		20	$28.0 \times 42.5 \times 42.0$	10.2	B32756G2206+000	19.0	2.4	440
		22	$30.0 \times 45.0 \times 42.0$	20.3	B32756G2226+000	21.0	2.2	400
		25	$33.0 \times 48.0 \times 42.0$	20.3	B32756G2256+000	23.0	2.0	180
		30	$33.0 \times 48.0 \times 42.0$	20.3	B32756G2306K000	24.0	1.8	180
275	550	5.0	$18.0 \times 32.5 \times 42.0$	_	B32756C7505+000	8.0	7.6	720
		6.0	$18.0 \times 32.5 \times 42.0$	_	B32756C7605+000	9.0	6.5	720
		7.0	$18.0 \times 32.5 \times 42.0$	_	B32756C7705+000	9.0	6.1	720
		8.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G7805+000	12.0	4.7	640
		9.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G7905+000	13.0	4.3	640
		10	$20.0 \times 39.5 \times 42.0$	10.2	B32756G7106+000	13.0	4.1	640
		12	$22.0 \times 45.0 \times 42.0$	10.2	B32756G7126+000	14.0	3.6	560
		15	$28.0 \times 42.5 \times 42.0$	10.2	B32756G7156+000	18.0	2.8	440
		20	$30.0 \times 45.0 \times 42.0$	20.3	B32756G7206K000	20.0	2.3	400
		22	$33.0 \times 48.0 \times 42.0$	20.3	B32756G7226+000	23.0	2.0	180

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 85 °C, 10 kHz for $\Delta T \leq$ 15 °C at $\Delta ESR_{typ} \leq \pm 5$ %

MKP AC filtering

Ordering codes and packing units (lead spacing 37.5 mm)

V_{RMS}	V_R	C _R ³⁾	Max. dimensions	P ₁	Ordering code	I _{RMS} ⁴⁾	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	85 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	m $Ω$	pcs./MOQ
310	580	5.0	$18.0 \times 32.5 \times 42.0$	_	B32756C3505+000	9.0	7.6	720
		6.0	$18.0 \times 32.5 \times 42.0$	_	B32756C3605+000	9.5	6.4	720
		7.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G3705+000	12.0	5.3	640
		8.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G3805+000	12.5	4.7	640
		9.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G3905+000	13.0	4.3	640
		10	$22.0 \times 45.0 \times 42.0$	10.2	B32756G3106+000	14.0	3.9	560
		12	$22.0 \times 45.0 \times 42.0$	10.2	B32756G3126K000	14.5	3.5	560
		14	$28.0 \times 42.5 \times 42.0$	10.2	B32756G3146K000	17.0	2.9	440
		15	$30.0 \times 45.0 \times 42.0$	20.3	B32756G3156+000	19.0	2.6	400
		20	$33.0 \times 48.0 \times 42.0$	20.3	B32756G3206K000	22.0	2.2	180
350	580	5.0	$18.0 \times 32.5 \times 42.0$	_	B32756C8505+000	12.0	4.3	720
		6.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G8605+000	15.0	3.4	640
		7.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G8705+000	16.0	3.0	640
		8.0	$22.0 \times 45.0 \times 42.0$	10.2	B32756G8805+000	17.0	2.7	560
		9.0	$22.0 \times 45.0 \times 42.0$	10.2	B32756G8905+000	18.0	2.5	560
		10	$28.0 \times 42.5 \times 42.0$	10.2	B32756G8106+000	20.0	2.1	440
		12	$30.0 \times 45.0 \times 42.0$	20.3	B32756G8126+000	23.0	1.8	400
		15	$33.0 \times 48.0 \times 42.0$	20.3	B32756G8156+000	26.0	1.5	180
400	800	1.0	$12.0 \times 22.0 \times 42.0$	_	B32756C4105K000	5.0	15.2	1620
		2.0	$16.0 \times 28.5 \times 42.0$	_	B32756C4205+000	8.0	7.7	800
		3.0	$18.0 \times 32.5 \times 42.0$	_	B32756C4305K000	10.0	5.5	720
		4.0	$20.0\times39.5\times42.0$	10.2	B32756G4405+000	13.5	3.8	640
		5.0	$22.0 \times 45.0 \times 42.0$	10.2	B32756G4505+000	15.0	3.2	560
		6.0	$28.0 \times 42.5 \times 42.0$	10.2	B32756G4605+000	18.5	2.6	440
		7.0	$30.0 \times 45.0 \times 42.0$	20.3	B32756G4705+000	20.5	2.3	400
		8.0	$33.0 \times 48.0 \times 42.0$	20.3	B32756G4805+000	23.0	2.0	180
		9.0	$33.0\times48.0\times42.0$	20.3	B32756G4905K000	24.0	1.9	180

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

³⁾ Capacitance value measured at 1 kHz

⁴⁾ Max. ripple current I_{RMS} at 85 $^{\circ}$ C, 10 kHz for Δ T \leq 15 $^{\circ}$ C at Δ ESR_{typ} \leq ±5 %

Ordering codes and packing units (lead spacing 52.5 mm)

V_{RMS}	V_R	$C_R^{1)}$	Max. dimensions	P ₁	Ordering code	I _{RMS} ²⁾	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	85 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
250	500	20	$30.0 \times 45.0 \times 57.5$	20.3	B32758G2206+000	18.0	3.7	280
		22	$30.0 \times 45.0 \times 57.5$	20.3	B32758G2226+000	19.0	3.4	280
		25	$30.0 \times 45.0 \times 57.5$	20.3	B32758G2256+000	19.5	3.3	280
		30	$30.0 \times 45.0 \times 57.5$	20.3	B32758G2306+000	20.0	3.1	280
		35	$30.0 \times 45.0 \times 57.5$	20.3	B32758G2356K000	21.0	2.8	280
		40	$35.0 \times 50.0 \times 57.5$	20.3	B32758G2406+000	24.0	2.4	108
		45	$35.0 \times 50.0 \times 57.5$	20.3	B32758G2456K000	25.0	2.2	108
		50	$38.0\times57.5\times57.5$	20.3	B32758G2506+000	27.0	2.0	96
		55	$38.0\times57.5\times57.5$	20.3	B32758G2556+000	28.0	1.8	96
		60	$38.0\times57.5\times57.5$	20.3	B32758G2606K000	29.0	1.8	96
		65	$45.0 \times 57.0 \times 57.5$	20.3	B32758G2656+000	31.0	1.6	140
		70	$45.0 \times 57.0 \times 57.5$	20.3	B32758G2706K000	32.0	1.6	140
275	550	20	$30.0 \times 45.0 \times 57.5$	20.3	B32758G7206+000	17.0	3.7	280
		22	$30.0 \times 45.0 \times 57.5$	20.3	B32758G7226+000	18.0	3.4	280
		25	$30.0 \times 45.0 \times 57.5$	20.3	B32758G7256+000	19.0	3.3	280
		30	$35.0 \times 50.0 \times 57.5$	20.3	B32758G7306+000	22.0	2.6	108
		35	$35.0 \times 50.0 \times 57.5$	20.3	B32758G7356+000	23.0	2.4	108
		40	$38.0\times57.5\times57.5$	20.3	B32758G7406+000	26.0	2.1	96
		45	$38.0\times57.5\times57.5$	20.3	B32758G7456+000	27.0	2.0	96
		50	$45.0 \times 57.0 \times 57.5$	20.3	B32758G7506+000	30.0	1.8	140
		55	$45.0 \times 57.0 \times 57.5$	20.3	B32758G7556K000	31.0	1.8	140
310	580	20	$30.0 \times 45.0 \times 57.5$	20.3	B32758G3206+000	19.0	3.7	280
		22	$30.0\times45.0\times57.5$	20.3	B32758G3226+000	20.0	3.4	280
		25	$35.0\times50.0\times57.5$	20.3	B32758G3256+000	22.0	3.0	108
		30	$35.0\times50.0\times57.5$	20.3	B32758G3306+000	23.0	2.6	108
		35	$38.0\times57.5\times57.5$	20.3	B32758G3356+000	26.0	2.3	96
		40	$38.0\times57.5\times57.5$	20.3	B32758G3406K000	28.0	2.1	96
		45	$45.0 \times 57.5 \times 57.5$	20.3	B32758G3456+000	30.0	1.9	140

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 85 $^{\circ}$ C, 10 kHz for Δ T \leq 15 $^{\circ}$ C at Δ ESR_{typ} \leq ±5 %

MKP AC filtering

Ordering codes and packing units (lead spacing 52.5 mm)

$\overline{V_{RMS}}$	V_R	$C_R^{3)}$	Max. dimensions	P ₁	Ordering code	I _{RMS} ⁴⁾	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	85 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
350	580	15	$30.0 \times 45.0 \times 57.5$	20.3	B32758G8156+000	21.0	2.6	280
		20	$35.0\times50.0\times57.5$	20.3	B32758G8206+000	26.0	2.0	108
		22	$35.0\times50.0\times57.5$	20.3	B32758G8226+000	27.0	1.9	108
		25	$35.0\times50.0\times57.5$	20.3	B32758G8256K000	28.0	1.8	108
		30	$38.0\times57.5\times57.5$	20.3	B32758G8306+000	29.0	1.5	96
		33	$38.0 \times 57.5 \times 57.5$	20.3	B32758G8336K000	30.0	1.4	96
		35	$45.0 \times 57.5 \times 57.5$	20.3	B32758G8356+000	32.0	1.3	140
400	800	9.0	$30.0\times45.0\times57.5$	20.3	B32758G4905+000	20.0	3.0	280
		10	$30.0 \times 45.0 \times 57.5$	20.3	B32758G4106+000	21.0	2.8	280
		12	$35.0 \times 50.0 \times 57.5$	20.3	B32758G4126+000	25.0	2.3	108
		15	$38.0 \times 57.5 \times 57.5$	20.3	B32758G4156+000	28.0	1.9	96
		20	$45.0 \times 57.5 \times 57.5$	20.3	B32758G4206+000	32.0	1.6	140

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

³⁾ Capacitance value measured at 1 kHz

⁴⁾ Max. ripple current I_{RMS} at 85 $^{\circ}$ C, 10 kHz for Δ T \leq 15 $^{\circ}$ C at Δ ESR_{typ} \leq ±5 %

Technical data

Reference standard: IEC 61071:2007, all data given at T = 20 °C unless otherwise specified.

a given at 1 = 20 °C unless otherwise specified.
er category temperature, T _{op,max} +105 °C
d temperature T_{max} +85 °C
er category temperature T _{min} —40 °C
:
> 85 °C derating for V _{RMS} or V _R should be 1.5%/°C
C _R ≤ 55 μF
C _R > 55 μF
00 s
V_R for 10 s or 1.6 \cdot V_R for 2 s
V AC at 50/60Hz Hz, 60 s (typical test)
$_{c} = C_{R} \cdot \frac{dV}{dt}$
perature T: 60 °C ±2 °C
tive humidity: 95% ±2%
ed voltage: V _{RMS} (50/60Hz)
duration: 1344 h
acitance change $ \Delta C/C_0 \le 10\%$
pation factor change $\Delta \tan \delta \leq 0.005$
ation resistance R_{ins} $\geq 50\%$ specified limit
cordance with IEC 60068-2-14:2009 (Test Nb)
(<10 \times 10 ⁻⁹ /h) at 0.5 \times V _{RMS} , 40 $^{\circ}$ C
000 h at V _{RMS} (50/60Hz) at 70 °C
conversion to other operating conditions and
eratures, refer to chapter "Quality, 2 Reliability".
t/open circuit
acitance change $ \Delta C/C_0 \geq 10\%$
pation factor change $\Delta \tan \delta > 4$ upper limit values
ation resistance R _{ins}
ne constant $\tau = C_R \cdot R_{ins}$ < 500 s
So the state of

Note:

1000 hrs / 85 $^{\circ}\text{C}$ / 85% relative humidity with V_{RMS} available on request, based on special design.

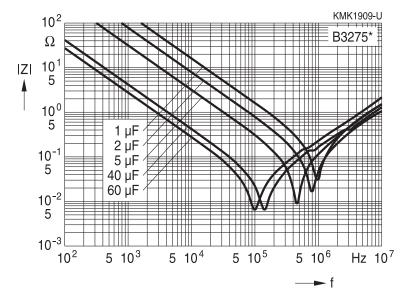
MKP AC filtering

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

"k0" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$.

Note:

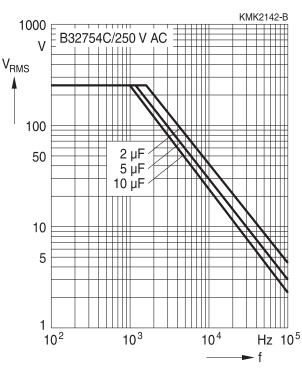

The values of dV/dt and k0 provided below must not be exceeded in order to avoid damaging the capacitor. These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse. For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency

Lead spacing	27.5 mm			37.5 mm						
Туре			B32754					B32756		
V _R (V DC)	500	550	580	580	800	500	550	580	580	800
V _{RMS} (V AC)	250	275	310	350	400	250	275	310	350	400
	dV/dt in '			n V/µs						
	50	55	68	80	100	25	30	35	50	60

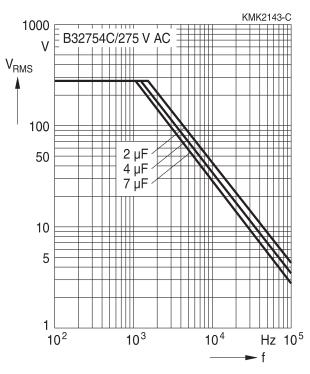
Lead spacing	52.5 mm				
Туре	B32758				
V _R (V DC)	500	550	580	580	800
V _{RMS} (V AC)	250	275	310	350	400
	dV/dt in V/μs				
	13 15 17 25				30

Impedance Z versus frequency f

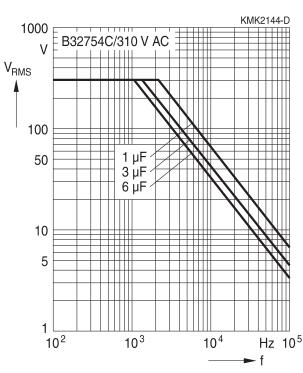
(typical values)

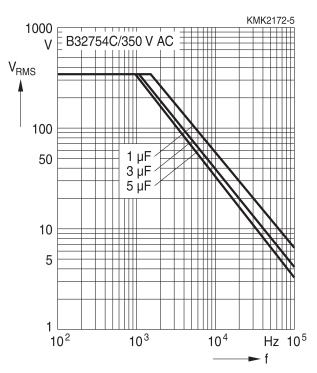


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤85 °C)


For T_A >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

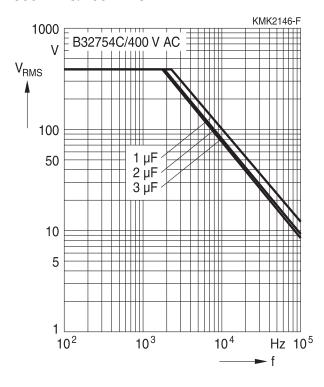
Lead spacing 27.5 mm


500 V DC/250 V AC


550 V DC/275 V AC

580 V DC/310 V AC

580 V DC/350 V AC

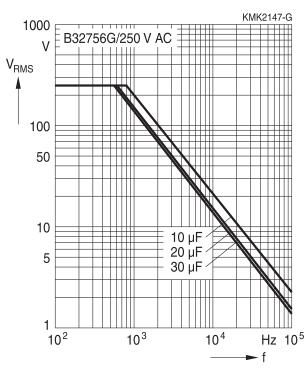


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_{\text{A}} \leq \! 85~^{\circ}\text{C})$

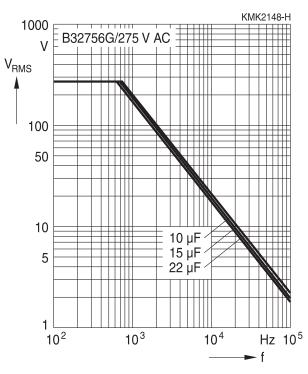
For T_A >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

Lead spacing 27.5 mm

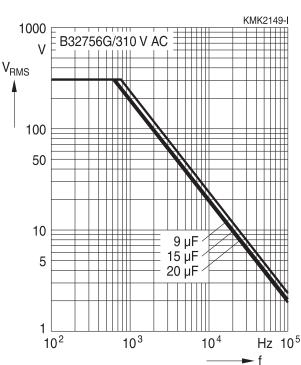
800 V DC/400 V AC

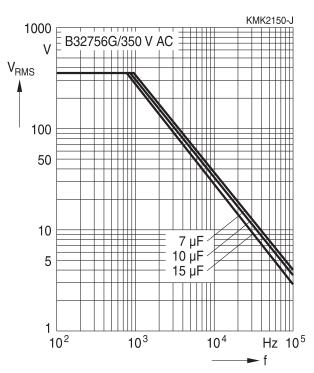


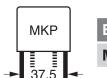
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤85 °C)


For T_A >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

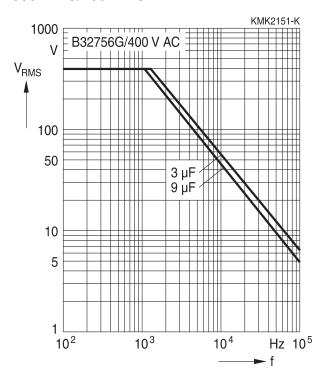
Lead spacing 37.5 mm (2 pins, 4 pins)


500 V DC/250 V AC


550 V DC/275 V AC


580 V DC/310 V AC

580 V DC/350 V AC

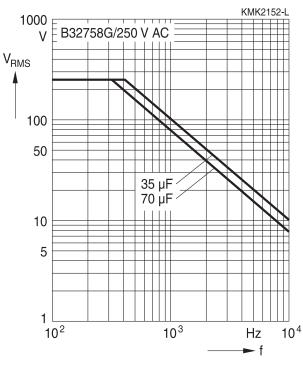

MKP AC filtering

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤85 °C)

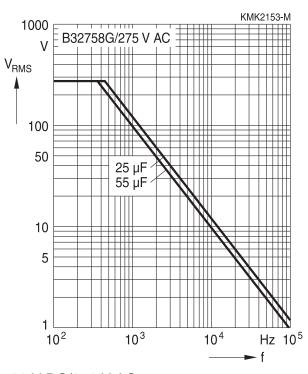
For T_A >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

Lead spacing 37.5 mm (2 pins, 4 pins)

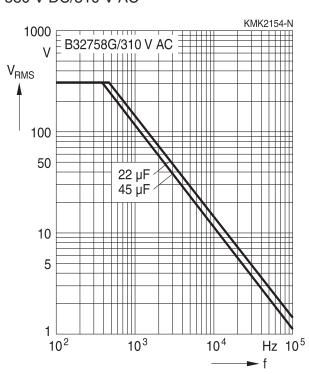
800 V DC/400 V AC

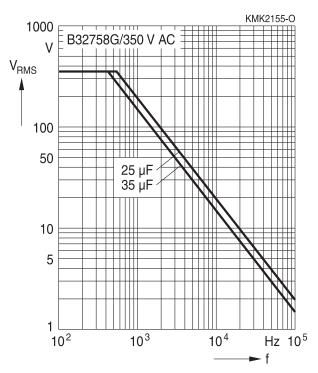


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤85 °C)


For T_A >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

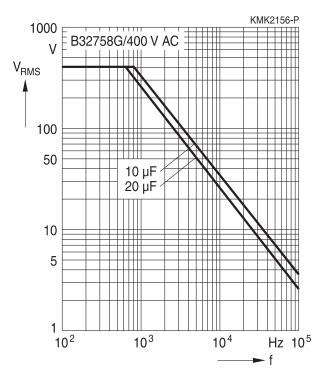
Lead spacing 52.5 mm


500 V DC/250 V AC


550 V DC/275 V AC

580 V DC/310 V AC

580 V DC/350 V AC

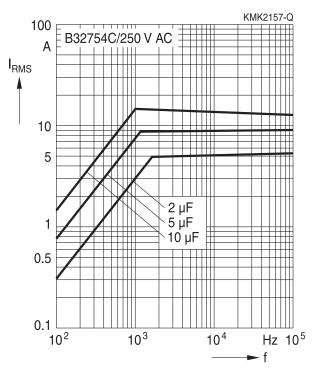

MKP AC filtering

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤85 °C)

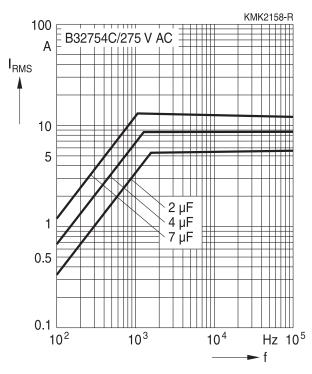
For T_A >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

Lead spacing 52.5 mm

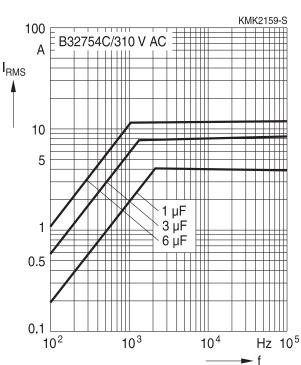
800 V DC/400 V AC

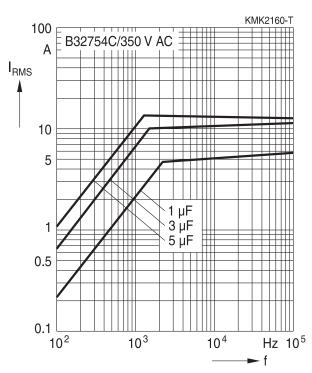


Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms T_A ≤85 °C)


For T_A >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

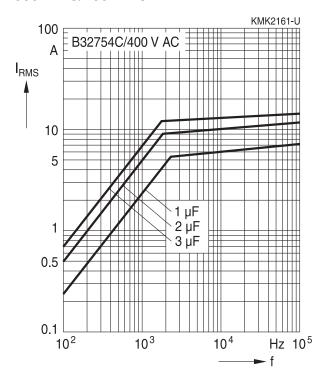
Lead spacing 27.5 mm


500 V DC/250 V AC


550 V DC/275 V AC

580 V DC/310 V AC

580 V DC/350 V AC

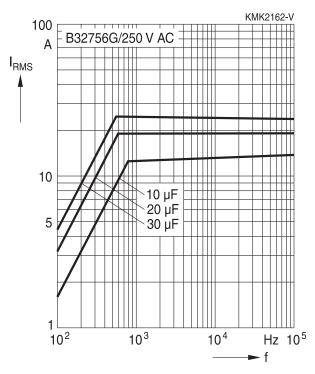


Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 85$ °C)

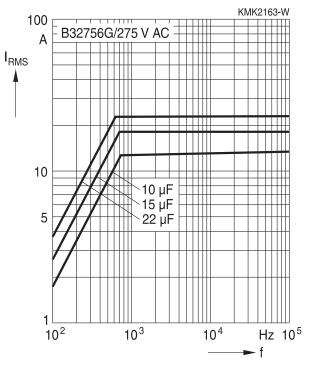
For T_A >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

Lead spacing 27.5 mm

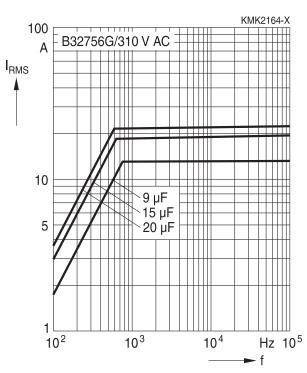
800 V DC/400 V AC

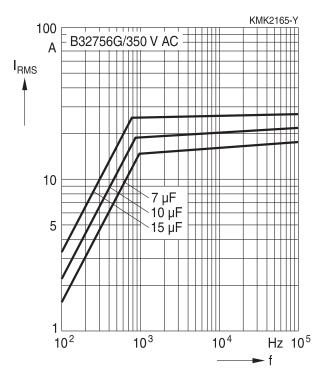


Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms T_A ≤85 °C)


For T_A >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

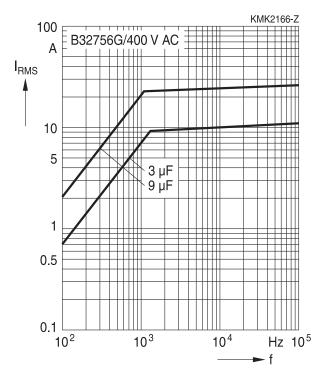
Lead spacing 37.5 mm (2 pins, 4 pins)


500 V DC/250 V AC


550 V DC/275 V AC

580 V DC/310 V AC

580 V DC/350 V AC

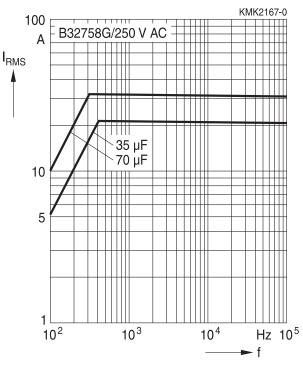

MKP AC filtering

Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 85$ °C)

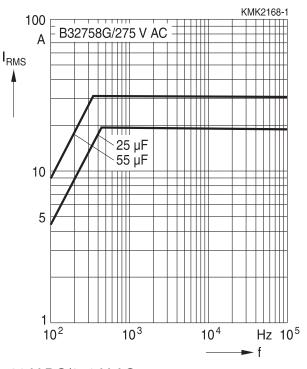
For T_A >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

Lead spacing 37.5 mm (2 pins, 4 pins)

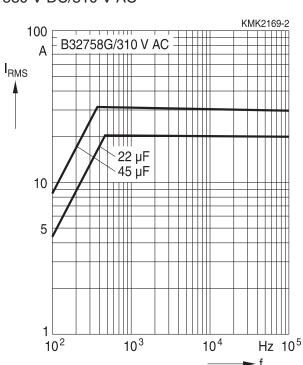
800 V DC/400 V AC

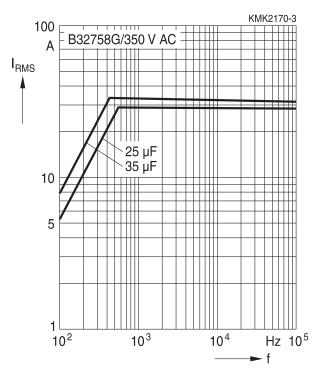


Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms T_A ≤85 °C)


For T_A >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

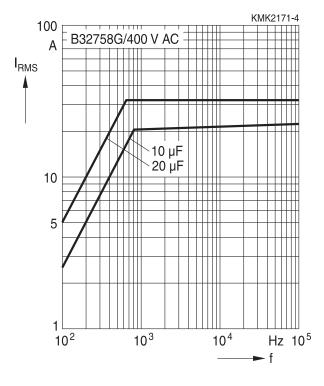
Lead spacing 52.5 mm


500 V DC/250 V AC


550 V DC/275 V AC

580 V DC/310 V AC

580 V DC/350 V AC

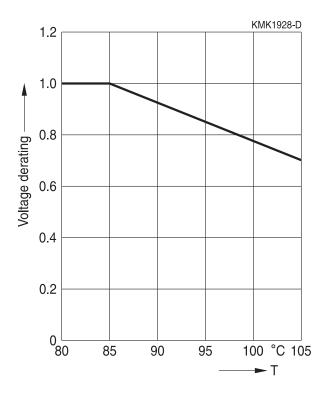

MKP AC filtering

Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 85$ °C)

For T_A >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

Lead spacing 52.5 mm

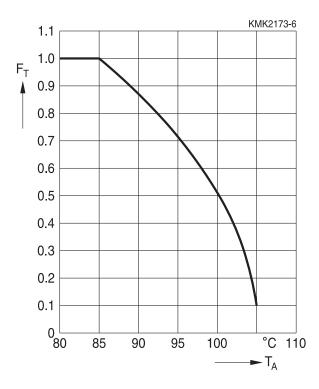
800 V DC/400 V AC



Maximum permissible continuous DC voltage versus temperature T

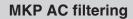
MKP AC filtering

Maximum AC voltage (V_{RMS}) versus temperature T_A ≤85 °C


The graphs described in the previous section for the maximum AC voltage versus frequency are valid for moderate temperature: $T_A \le 85$ °C in MKP. For temperatures higher than these limits, we have to consider additional effects depending on the frequency and dielectric:

Low frequency (f <f1)

For frequency below f1 (the frequency is the V_{RMS} begin to derating versus frequency), a derating of the V_{RMS} versus the working temperature has to be applied, following the rules defined above.


High frequencies (f1 ≤f)

For frequency below f1 (The frequency is the V_{RMS} begin to derating versus frequency), a derating of the V_{RMS} versus the working temperature has to be applied, following the rules defined as below:

Derating factor F_T for V_{RMS} versus T_A

Testing and Standards

Test	Reference	Conditions of tes	t		Performance requirements
Electrical parameters	IEC 61071:2007	Voltage between terminals: 1.5 V _R , 60 s			Within specified limits No visible damage
		Terminals and end 2000 V AC, 60 s	closure:		No flashover
		Insulation resistan Capacitance C _R Dissipation factor			
Robustness	IEC	Tensile strength (t	est U _a 1)		Within specified
of termina- tions	60068-2-21:2006	Wire diameter	Section	Tensile force	specification
		$0.5 < d_1 \le 0.8 \text{ mm}$ $0.8 < d_1 \le 1.25 \text{ mm}$	≤0.5m ² ≤1.2m ²	10 N 20 N	
		Duration: 10 s +/-	1s		
		Bending U _b metho	d 1		
		Wire diameter	Section	Tensile force	
		$0.5 < d_1 \le 0.8 \text{ mm}$ $0.8 < d_1 \le 1.25 \text{ mm}$	≤0.5m ² ≤1.2m ²	10 N 20 N	
		4×90 °C Duration: 2 s to 3 s	s / bend	ı	
Resistance	IEC	Solder bath tempe	rature at 2	260±5°C,	ΔC/C ₀ ≤0.5%
to solder- ing heat	60068-2-20:2008	immersion for 10 s	econds		Increase of tan $\delta \le 0.005$
Vibration	IEC 60068-2-6:2007	10 Hz to 55 Hz: Amplitude ±0.35 mm or acceleration 98 m/s ²			No visible damage
		Test duration: 10 frequency cycles, 3 axes offset from each other by 90°, 1 octave/min, Visual examination			
Bump	IEC 60068-2-6:2007	Pulse shape: half Acceleration: 490 Duration of pulse: Visual examination	m/s² 11 ms		No visible damage $ \Delta C/C_0 \leq 0.5\%$ Increase of tan $\delta \leq 0.005$ compared to initial value

MKP AC filtering

Test	Reference	Conditions of test	Performance requirements
THB test (Grade III Test A, high robustness under high humidity)	IEC 60384-14: 2013/AMD1:2016	60 °C / 95% relative humidity / V _{RMS} / 1344 h	No visible damage $ \Delta C/C_0 \leq 10\%$ $\Delta \tan \delta \ (1 \ \text{kHz}) \leq 0.005$ $R_{\text{ins}} \geq 50\% \ \text{specified limit}$
Temperature cycling	AEC-Q200:2010	T _A = lower category temperature T _R = rated temperature 1000 cycles, duration t=30 min	No visible damage $ \Delta C/C_0 \le 3\%$
Surge test	IEC 61071:2007	$1.1 \cdot V_R$ or $I_{test} = 1.1 I_{max}$. Number of discharges: 5 Time lapse: every 2 min (10 min total) within 5 min after the surge discharge test Duration: 10 s; $1.5 \cdot V_R$ at T_A	No visible damage $ \Delta C/C_0 \le 1\%$ $\tan \delta \ (10 \ kHz) \le 1.2$ initial $\tan \delta +0.0001$
Self-healing	IEC 61071:2007	1.5 · V _R ; duration 10 s Number of clearings: ≤5 Clearing = voltage drop of 5% Increase the voltage at 100 V/s till 5 clearings occur with a maximum of 2.5 · V _R for a duration of 10 s	$ \Delta C/C_0 \le 0.5\%$ tan δ (10 kHz) ≤ 1.12 initial tan δ +0.0001
Environ- mental	IEC 61071:2007	 Change of temperature acc. to IEC 60068-2-14, test N_b T_{max.} = 85 °C, T_{min.} = -40 °C, Transition time: 1 h, equiv. to 1 °C/min, 5 cycles 2. Damp heat steady state acc. to IEC 60068-2-78, test C_a T = 40 °C ±2 °C, RH = 93% ±3 %, Duration: 56 days 3. DC voltage between terminal, 1.5 · V_R at ambient temperature Duration: 10 s 	No puncturing or flashover Self-healing punctures permitted $ \Delta C/C_0 \le 2\%$ Increase of tan δ (10 kHz) ≤ 0.015
Thermal stability test under overload conditions	IEC 61071:2007	Natural cooling $T_A \pm 5$ °C 1.21 · $P_{max.} = (V_2/2) \cdot W_2 \cdot C \cdot \tan \delta =$ 1.21 · $(I^2_{max.}/W_2 \cdot C) \cdot \tan \delta_2$ with $W_2 = 2 \cdot \pi \cdot f_2$ for $I_{max.}$ (see specific reference data) $f_2 = 10$ kHz, duration 48 h Measure the temperature every 1.5 h during the last 6 h	Temperature rise <1 °C $ \Delta C/C_0 \le 2\%$ Increase of tan δ (10 kHz) ≤ 1.2 initial tan δ +0.015

Test	Reference	Conditions of test	Performance
			requirements
Endurance	IEC 61071:2007	Sequence:	$ \Delta C/C_0 \leq 3\%$
test between		$1.25 \cdot V_{RMS}$ at $T_{max.} = 85 ^{\circ}C$	Increase of tan δ
terminal		$1.0 \cdot V_{RMS}$ at $T_{max.} = 105 ^{\circ}C$	≤0.015
		Duration: 500 h	compared to initial
		1000 × discharge at 1.4 · I	value
		(max.repetitive peak current in	
		continuous operation)	
		$1.25 \cdot V_{RMS}$ at $T_{max.} = 85 ^{\circ}C$	
		$1.0 \cdot V_{RMS}$ at $T_{max.} = 105 ^{\circ}C$	
		Duration: 500 h	

Mounting guidelines

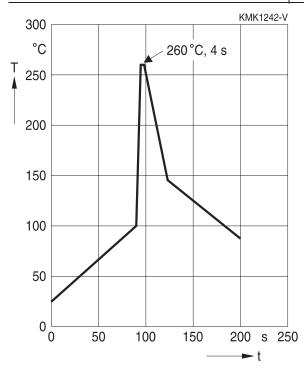
1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder



MKP AC filtering

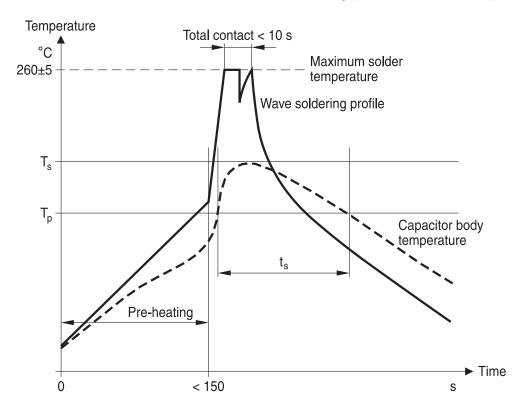
1.2 Resistance to soldering heat

Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1. Conditions:

Serie	S	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated uncoated (lead spacing >10 mm)	260 ±5 °C	10 ±1 s
MFP	anocaros (rosas opasnig vivo mini)		
MKP	(lead spacing >7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5 ±1 s
MKP	(lead spacing ≤7.5 mm)		<4 s
MKT	uncoated (lead spacing ≤10 mm) insulated (B32559)		recommended soldering profile for MKT uncoated (lead spacing ≤ 10 mm) and insulated (B32559)

Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane	
Shield Heat-absorbing board, (1.5 ±0.5) mm thick, I		
	capacitor body and liquid solder	
Evaluation criteria:		
Visual inspection	No visible damage	
$\Delta C/C_0$	2% for MKT/MKP/MFP	
$\Delta O/O_0$	5% for EMI suppression capacitors	
tan δ As specified in sectional specification		

1.3 General notes on soldering


Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

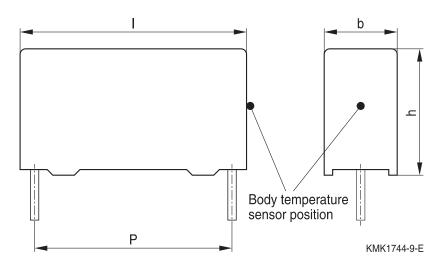
- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

Recommendations

As a reference, the recommended wave soldering profile for our film capacitors is as follows:

T_s: Capacitor body maximum temperature at wave soldering


 T_p : Capacitor body maximum temperature at pre-heating

KMK1745-A-E

MKP AC filtering

Body temperature should follow the description below:

MKP capacitor

During pre-heating: T_p ≤110 °C

During soldering: $T_s \le 120 \, ^{\circ}C$, $t_s \le 45 \, s$

MKT capacitor

During pre-heating: T_p ≤125 °C

During soldering: T_s ≤160 °C, t_s ≤45 s

When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.

Leaded film capacitors are not suitable for reflow soldering.

In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T_s) must be ≤ 120 °C.

One recommended condition for manual soldering is that the tip of the soldering iron should be <360 °C and the soldering contact time should be no longer than 3 seconds.

For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

Please refer to our Film Capacitors Data Book in case more details are needed.

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.
- Consult us if application is with severe temperature and humidity condition.
- There are no serviceable or repairable parts inside the capacitor. Opening the capacitor or any attempts to open or repair the capacitor will void the warranty and liability of TDK Electronics.
- Please note that the standards referred to in this publication may have been revised in the meantime.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Topic	Safety information	Reference chapter "General technical information"
Storage conditions	Make sure that capacitors are stored within the specified range of time, temperature and humidity conditions.	4.5 "Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive flammability), avoid overload of the capacitors (active flammability) and consider the flammability of materials.	5.3 "Flammability"
Resistance to vibration	Do not exceed the tested ability to withstand vibration. The capacitors are tested to IEC 60068-2-6:2007. TDK Electronics offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics".	5.2 "Resistance to vibration"

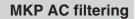
MKP AC filtering

Topic	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.


Correlation of data sheet values and modelling tool outputs

Data sheet values and results of design tools may deviate as they have not been derived in the same context.

While data sheets show individual parameter statements without considering a possible dependency to other parameters. Tools model a complete given scenario as input and processed inside the tool.

Furthermore as we constantly strive to improve our models, the results of tools can change over time and be a non-binding indication only.

Symbols and terms

Symbol	English	German
α	Heat transfer coefficient	Wärmeübergangszahl
α_{C}	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität
Α	Capacitor surface area	Kondensatoroberfläche
β_{C}	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung
ΔC/C	Relative capacitance change (relative deviation of actual value)	Relative Kapazitätsänderung (relative Abweichung vom Ist-Wert)
$\Delta C/C_R$	Capacitance tolerance (relative deviation from rated capacitance)	Kapazitätstoleranz (relative Abweichung vom Nennwert)
dt	Time differential	Differentielle Zeit
Δt	Time interval	Zeitintervall
ΔΤ	Absolute temperature change (self-heating)	Absolute Temperaturänderung (Selbsterwärmung)
$\Delta tan \delta$	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors
ΔV	Absolute voltage change	Absolute Spannungsänderung
dV/dt	Time differential of voltage function (rate of voltage rise)	Differentielle Spannungsänderung (Spannungsflankensteilheit)
$\Delta V/\Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatz-Serienwiderstand
f	Frequency	Frequenz
f ₁	Frequency limit for reducing permissible AC voltage due to thermal limits	Grenzfrequenz für thermisch bedingte Reduzierung der zulässigen Wechselspannung
f_2	Frequency limit for reducing permissible AC voltage due to current limit	Grenzfrequenz für strombedingte Reduzierung der zulässigen Wechselspannung
f_r	Resonant frequency	Resonanzfrequenz
F_D	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur Diffusion
F_T	Derating factor	Deratingfaktor
i	Current (peak)	Stromspitze
Ic	Category current (max. continuous current)	Kategoriestrom (max. Dauerstrom)

MKP AC filtering

Symbol	English	German
I _{RMS}	(Sinusoidal) alternating current,	(Sinusförmiger) Wechselstrom
	root-mean-square value	
i_z	Capacitance drift	Inkonstanz der Kapazität
k_0	Pulse characteristic	Impulskennwert
Ls	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λ_{o}	Constant failure rate during useful	Konstante Ausfallrate in der
	service life	Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P_{diss}	Dissipated power	Abgegebene Verlustleistung
P_{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des
		Entladekreises
R_i	Internal resistance	Innenwiderstand
R _{ins}	Insulation resistance	Isolationswiderstand
R_P	Parallel resistance	Parallelwiderstand
R_s	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
Т	Temperature	Temperatur
τ	Time constant	Zeitkonstante
tan δ	Dissipation factor	Verlustfaktor
tan $\delta_{\scriptscriptstyle D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
tan δ_{P}	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
tan $\delta_{ extsf{S}}$	Series component of dissipation factor	Serienanteil des Verlustfaktors
T _A	Temperature of the air surrounding the component	Temperatur der Luft, die das Bauteil umgibt
T_{max}	Upper category temperature	Obere Kategorietemperatur
T _{min}	Lower category temperature	Untere Kategorietemperatur
t _{OL}	Operating life at operating temperature	Betriebszeit bei Betriebstemperatur und
•	and voltage	-spannung
T_op	Operating temperature, $T_A + \Delta T$	Beriebstemperatur, $T_A + \Delta T$
T _R	Rated temperature	Nenntemperatur
T _{ref}	Reference temperature	Referenztemperatur
t_{SL}	Reference service life	Referenz-Lebensdauer

Symbol	English	German
V_{AC}	AC voltage	Wechselspannung
V_{C}	Category voltage	Kategoriespannung
$V_{C,RMS}$	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V_{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V_{DC}	DC voltage	Gleichspannung
V_{FB}	Fly-back capacitor voltage	Spannung (Flyback)
V_i	Input voltage	Eingangsspannung
V_{o}	Output voltage	Ausgangssspannung
V_{op}	Operating voltage	Betriebsspannung
V_p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V_R	Rated voltage	Nennspannung
ν̂ _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage,	(Sinusförmige) Wechselspannung
	root-mean-square value	
V_{SC}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung
		"Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.

Important notes

- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CarXield, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2020-06