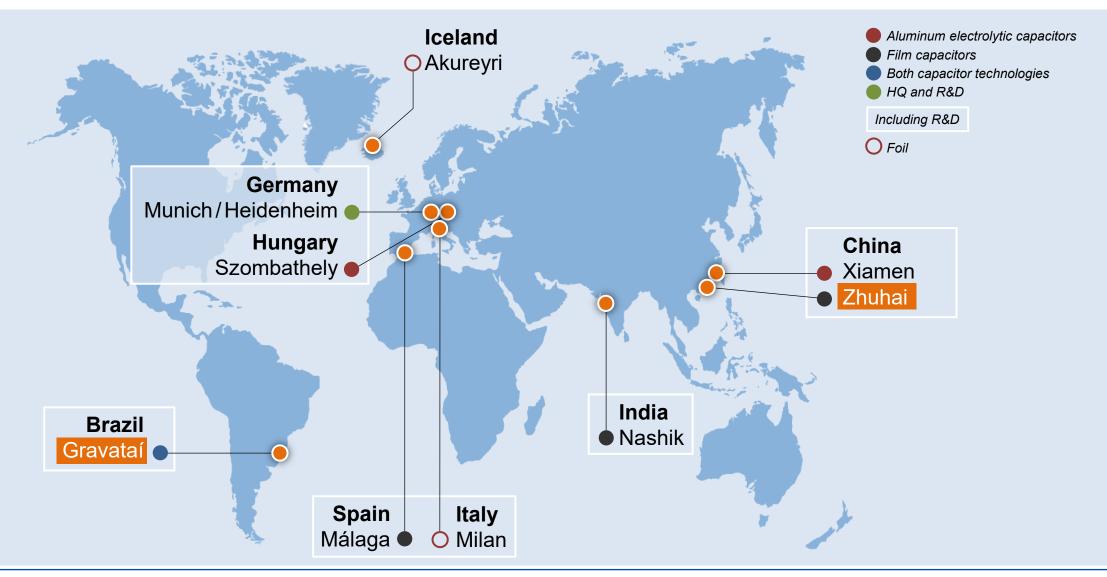


PEC LP MKP Capacitors

Aluminum & Film Capacitors Business Group


TDK Electronics AG Munich, Germany July 2022

Aluminum & Film Capacitors Business Group at a glance

Key data		Portfolio		
Headquarters	Munich, Germany	Aluminum electrolytic capacitors		
Number of plants	8	¬ Screw terminals ¬ Snap-in / Solder pins / Large size		
Employees total	6300	 ¬ Axial-lead / Soldering star ¬ Single-ended 		
Management	Karl Stoll CEO	 Hybrid polymer aluminum electrolytic capacitors SMD Axial-lead / Soldering star 		
	Bernhard Koch Deputy General Manager	 Film capacitors for Industrial and for Automotive DC capacitors 		
	Auxi Fernandez CFO	 AC capacitors Power capacitor chips for low power (PCC LP) Power electronic capacitors (MKP) 		
		 Film capacitors for Energy Solutions Power electronic capacitors for high power (PEC HP) Power electronic capacitors for low power (PEC LP MKP) Power factor correction (PFC) capacitors and key components for low and medium voltage (LV, MV) Power quality solutions (PQS) 		

Our Aluminum & Film Capacitors Business Group has a global manufacturing presence

Plant in Zhuhai, China

Product range

Aluminum & Film Capacitors BG

Film capacitors

- DC capacitors
- Power capacitor chips for low power (PCC LP)
- Power electronic capacitors for high power (PEC HP MKP)
- Power electronic capacitors for low power (PEC LP MKP)
- Power factor correction (PFC) capacitors and key components for low voltage (LV)
- Power quality solutions (PQS)

Piezo & Protection Devices BG

- Disk, Energy, Strap and Block varistors
- SMD disc varistors (CU)
- Inrush current limiters (ICLs)
- PTC thermistors

70,100 m² Founded in 1998

Certification	
• ISO 3834	 IRIS (ISO/TS 22163)
• ISO 9001	• IATF 16949
• ISO 14001	

Plant in Gravataí, Brazil

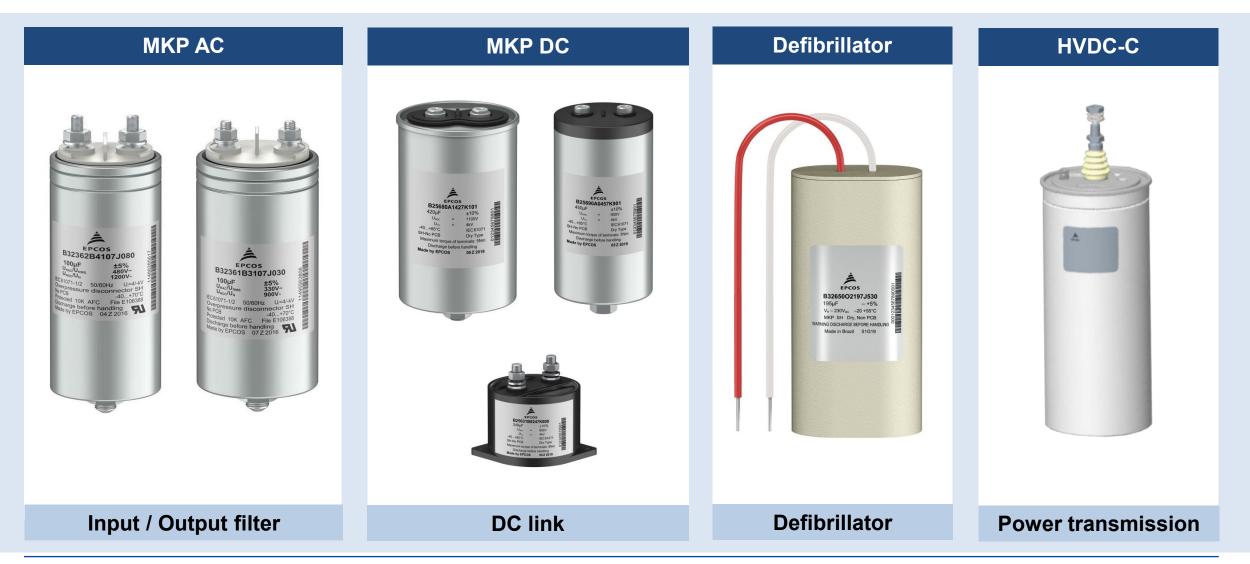
Product range

Aluminum & Film Capacitors BG

- Aluminum electrolytic capacitors
 - ¬ Axial-lead/Soldering star
 - ¬ Single-ended
 - ¬ Screw terminals
 - ¬ Snap-in/Solder pins
- Hybrid polymer aluminum electrolytic capacitors
 ¬ SMD

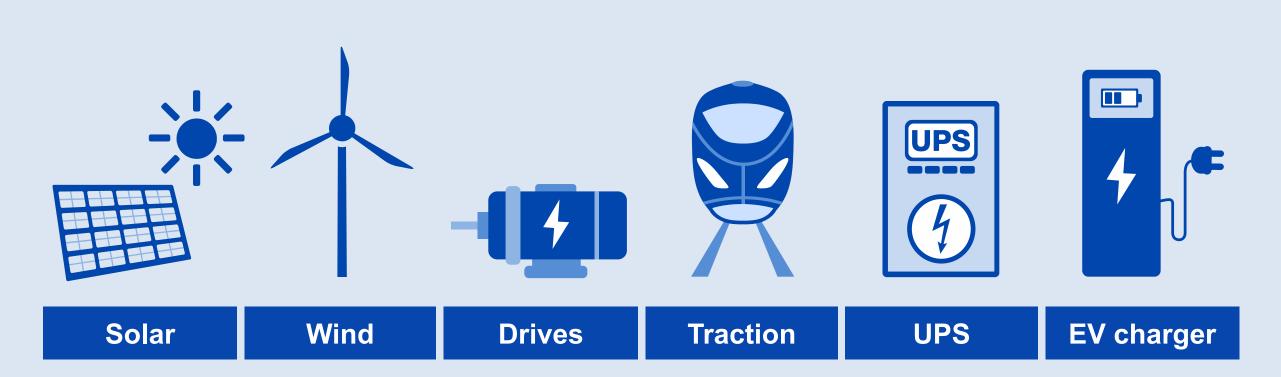
Film capacitors

- DC capacitors
- AC capacitors
- Power factor correction (PFC) capacitors and key components for low voltage (LV)
- Power electronic capacitors for defibrillators (MKP)


43,000 m² Founded in 1954

Certification

- ISO 9001
- ISO 14001
- IATF 16949


Attracting Tomorrow

PEC MKP capacitors portfolio

Power capacitors for wide area of applications

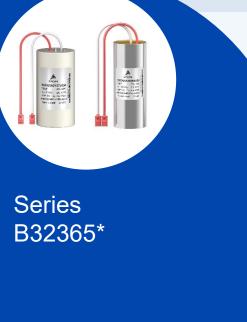
AC filter capacitors for industrial applications

Series B32361* B32362*

Features

- Capacitance range 20 μ F to 600 μ F, 250 V_{RMS} to 480 V_{RMS}
- IEC 61071, GB/T17702 and UL 810 compliant
- Temperature up to 85 °C hotspot
- Single-phase (1 Ph) capacitors

Applications


• Capacitor for AC input/output filtering for industrial applications, converters, UPS, drives and wind/solar inverters

Benefits

- Self-healing properties
- Safety mechanism, tear-off fuse overpressure disconnector

Defibrillator capacitor for medical application

Features

- Capacitance range 30 μF to 200 μF, Voltage up to 5 kV
- Cylindrical and oval design (Plastic or metal case)
- Terminals cable design upon request (Straight/Flag fast-on & Stripped)
- Temperature up to 60 °C hotspot

Applications

AED (Automated External Defibrillator) and manual defibrillator

Benefits

- Self-healing properties
- Low leakage current. High charge and discharge pulse capability
- Life expectancy up to 10,000 cycles

DC-link filter capacitors for industrial applications

Series B2568* New B2569* New B2562* B2563xB* B2563xE* New

Features

- Capacitance range 40 μF to 4000 μF, 500 V DC to 3000 V DC
- Low ESR <1 mΩ & low ESL <12 nH (B2563*E series, ultra low ESL design)
- Temperature up to 85 °C hotspot
- IEC 61071, RoHS compliant and UL 810 compliant

Applications

• DC link for renewable energy inverters, industrial drives, e-mobility, medical and traction

Benefits

- Hermetically sealed (B2568* series)
- Self-healing properties
- 85 °C/85% RH V_N 1000 h (B2568*/B2569* series)
- Life expectancy up to 100,000 hours at hot spot temperature +75 °C

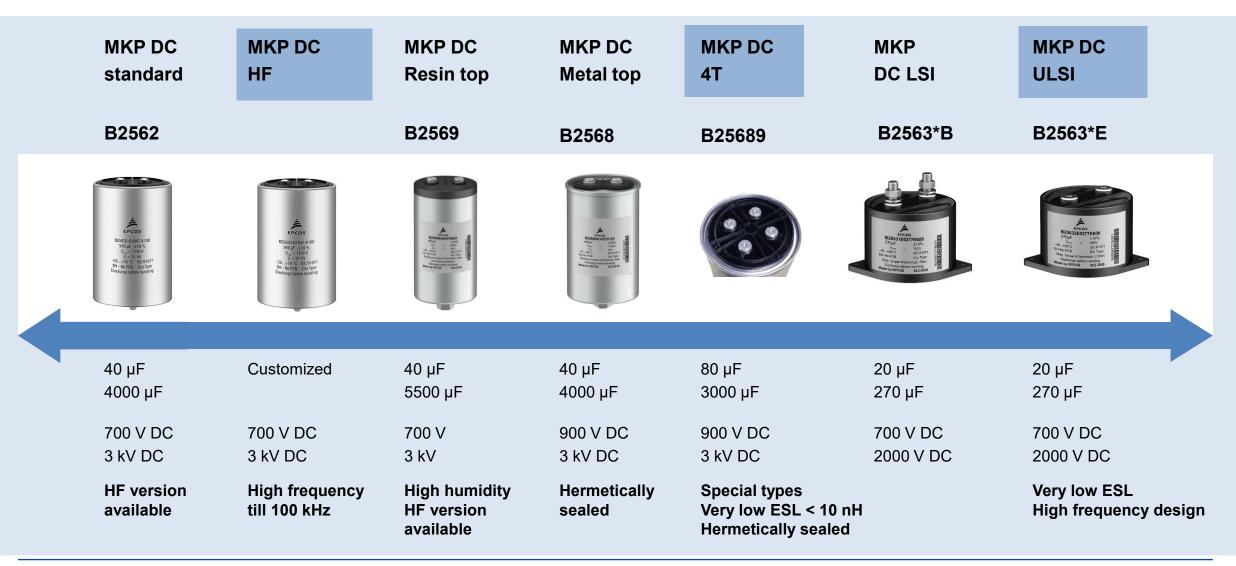
MKP DC filter capacitors product range

	Rated DC V _R DC [V]	С _R [µF] tol. +/- 10%	Diameter [mm]	Height H _c [mm]	Features	B2562* series	B2563* series
ard	700	40	85	70	 B2562* series DC link for renewable energies, industrial drives and traction 		
Standard							Exercision Exerci
St	3000	4000	116	345			
Low LSI ULSI HF	500	50	85	50	B2563* series	B2563* series	
N N					• Ls <13 nH		Muninan transmit form of the second s
C C	2000	400	85	65	 DC link for e-mobility 	DC link for e-mobility	
<u>ک</u> د	900	60	85	99	 B2568* series Metal top, hermetically sealed LS<14nH with 4T 	B25620-C1427-A101	New
Heavy duty							Å
<u> </u>	3000	4000	136	368			
D	700	45	75	95	 B2569* series Resin top, high humidity resistance and partial discharge 		B256322077K600 270µF ±10% 40,-48°C £6007 440,-48°C £60171
gh							Max forque of terminals: 2.5Min Max to the before handing Max to the Coops 322 2020 32
High	3000	5500	136	370		-	

New

B2568* series

- Herr
 Her
 Herr
 Herr
- Hermetically closed for operations in harsh environment
 - Fire and smoke classification according to EN 45545
 - Ultra low ESL (4 terminals upon request)
 - Customized designs (high frequency and segmented film) upon request


A CONTRACT OF CONTRACT

- B2569* series
- Resin top with improved partial discharge capabilities
- High humidity resistance 1.3 V_N, 85 °C/85%/500 hours
- Improved high Partial Discharge (PD) extinction voltage >1.6 kV AC (10 pC)

Power capacitors in round can for DC applications

Attracting Tomorrow

公TDK

Attracting Tomorrow

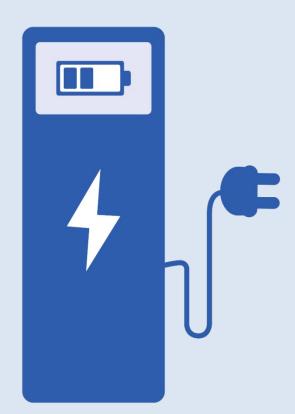
Recommendations for EV charging

High power density

- Trend to develop high-power density converters using SiC semiconductors
- Capacitors with high current capability, ultra low ESL and lower ESR at high frequencies are requested.

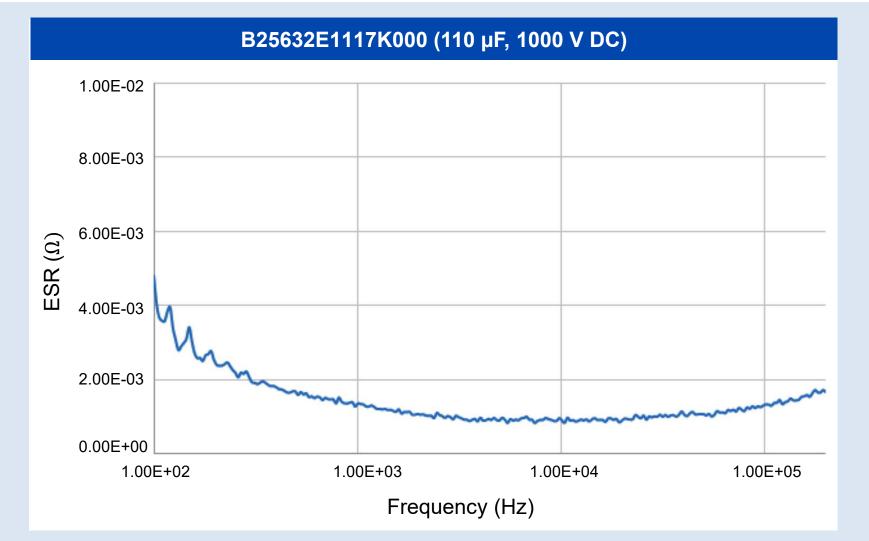
MKP DC ultra low inductance series B2563*E Ultra low ESL < 13 nH

Main applications


- DC fast charging
- Solar string inverters
- Induction heating
- Traction
- High speed switching applications

Product description

- Capacitance range 20 μF to 270 $\mu F;$ V DC: 700 V to 2 KV
- ESL < 13 nH
- Low ESR over frequency
- Diameter: 85 mm
- Height: 50 mm and 65 mm
- Male (M8) or female (M5) terminals
- High current capability
- DC link for SiC power modules and Si modules with high speed switching
- For 85 °C HS, (samples available at higher temperatures)



Attracting Tomorrow

MKP DC ULSI HF ESR versus frequency

Typical switching frequency power module

20 kHz to 40 kHz, so it is important to characterize the capacitor to low/stable ESR values until several hundreds kHz and consider all the harmonics for the thermal considerations

110 μF, 1000 V DC: 10 kHz: 1.18 mΩ 100 kHz: 1.38 mΩ

160 kHz: 1.5 mΩ

Low ESR in the working frequency range

MKP DC metal top B2568*

Hermetically sealed MKP DC series with metal top disk (B2568*)

- Range: 900 V to 3 kV, 50 µF to 4 mF
- Main DC link voltage for traction: 1 kV for 1.7 kV IGBTs and 2 kV for 3.3 kV IGBTs
- Target applications:
 - \neg Traction inverters
 - Commercial agricultural vehicles (CAV)
 - \neg Medium-voltage drives (MVD)
- Humidity: 85 °C/85% RH 1000 hours
- Fire & smoke classification acc. to EN 45545: R22: HL3 R23,: HL2
- Dimensions: Ø 85, Ø 116 and Ø 136 mm; height 74 mm to 368 mm
- Light weight (aluminum)
- Good cooling (normally stacked 2 windings)
- Ultra low ESL with 4 terminals design (<14 nH, in some cases <10 nH possible)

Standard datasheet available under:

www.tdk-electronics.tdk.com/en/power_capacitors

© TDK Electronics AG • 2022 CAP FILM ES MKP • 07/2022 • 16

MKP DC 4T: The hermetically sealed DC capacitor with ultra low ESL

Hermetically sealed MKP DC series with 4 terminals for ESL <14 nH (B25689* series)

- Range: 900 V to 3 kV, 50 µF to 3 mF
- Main DC link voltage for traction: 1 kV for 1.7 kV IGBTs and 2 kV for 3.3 kV IGBTs
- Target applications:
 - \neg Traction inverters
 - All high-speed switching applications
- Humidity: 85 °C/85% RH 1000 hours
- Fire & smoke classification acc. to EN 45545: R22: HL3 R23: HL2
- Dimensions: Ø116; Height: 74 mm to 345 mm
- Light weight (aluminum)
- Good cooling (normally stacked 2 windings)
- Approx. 60% less ESL than standard capacitor with 2T
- Typical ESL 12 to 15 nH (special designs with 10 nH possible)
- Lifetime up to 200,000 hours
- Samples available

Standard datasheet available under: www.tdk-electronics.tdk.com/en/power capacitors

Attracting Tomorrow

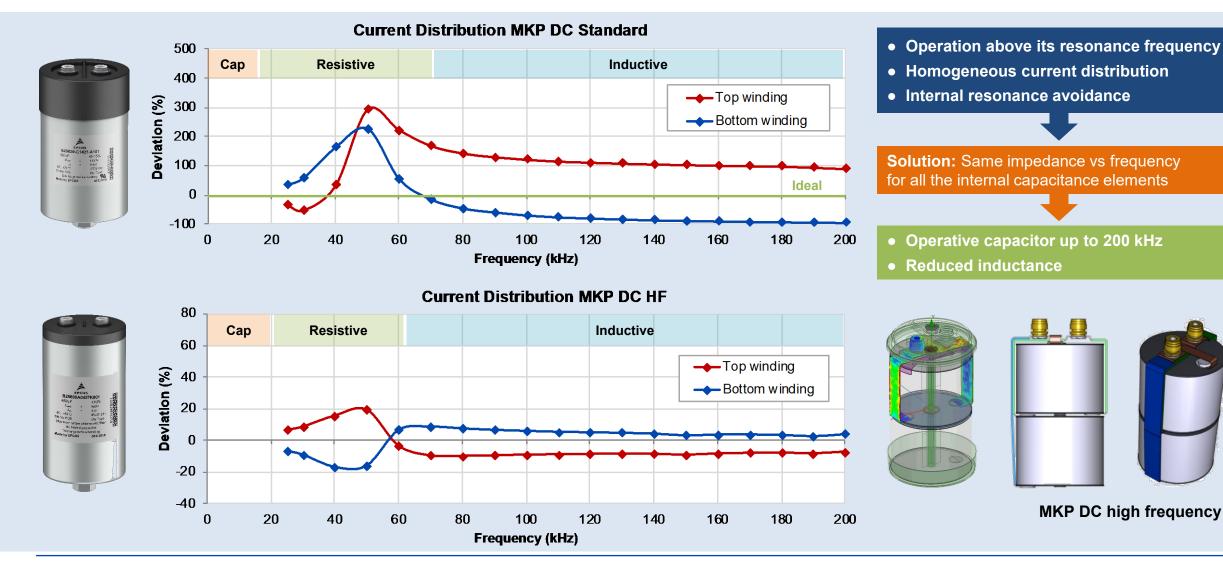
MKP DC metal top: Modular approach

Typical values requested – diameter = 116 mm:

Hc (mm)	1000 V DC (1.7 kV power modules)	1800 V DC (3.3 kV power modules)	2000 V DC (3.3 kV power modules)	ESL 2 terminals	ESL 4 terminals
75	360 µF	100 µF	80 µF	32	13
100	550 µF	165 µF	130 µF	25	10
179	1100 µF	330 µF	260 µF	34	14
229	1500 µF	450 µF	360 µF	38	15

Typical values requested – diameter = 85 mm:

Hc (mm)	1000 V DC (1.7 kV power modules)	1800 V DC (3.3 kV power modules)	2000 V DC (3.3 kV power modules)	ESL (typical nH)
179	550 µF	160 µF	130 µF	22 nH
229	740 µF	220 µF	180 µF	25 nH
252	810 μF	240 µF	195 µF	28 nH


* Special types with even lower ESL upon request

Same mechanical approach for all platforms

MKP DC high frequency vs MKP DC standard

☆TDK

Recommendations for renewable energies solar & wind

Better efficiency

- Solar. Since PV is strongly influenced by cost pressure then new inverters are forced to offer very high efficiency (97% to 98%) with longer maintenance periods.
- Application is demanding cost optimized standard products with higher nominal voltages and reduced ESR/ESL. Capacitors should be optimized to work at higher frequencies.
- Wind is as well strongly influenced by cost pressure with a trend to increase the output power specially in off-shore application.
- Both applications are demanding higher current densities.

Semikron Skiip4 module with our resin top DC link series

Full SiC String inverter using our **ULSI** capacitors family

Attracting Tomorrow

Recommendations for traction

High power density

- In light train application, the use of light and low volume converters is a must, so standardization of components (modular platforms) together compact designs is highly appreciated.
- Becoming more popular the use of fast switching IGBTs and SiC semiconductors with higher switching frequencies. This requires low ESL capacitors. Two good series are our MKP 4 terminal capacitor with ESL as low as 10 nH.

www.tdk-electronics.tdk.com