
www.tdk-electronics.tdk.com

Application Note 2024

Digital Readout and Trimming
of NTC Thermistors

2For further information please contact your local sales office.© TDK Electronics AG 2024

Digital Readout and Trimming
of NTC Thermistors

Introduction

The combination of low power consumption, high sensitivity,
and signal stability makes NTC (negative temperature
coefficient) thermistors the most popular temperature sensor
choice in automotive battery management, motor and climate
control as well as factory automation and field instrumentation.

In this application note, the basic circuit design considerations
will be explained to convert the resistance change of the NTC
into a digital temperature readout. The example circuit uses the
ADS1115, a 16-bit delta-sigma ADC from Texas Instruments (TI),
to convert the voltage drop of a K560 surface sensor from TDK
Electronics to a 16-bit I2C output for skin temperature sensing.

Alternative resistance to temperature calculations will be
compared: exponential curves, lookup tables and Steinhart-
Hart equation. For all cases, Python-3 code or C++ code
is available for download, which can be adapted for other
applications and other NTC curves in own projects.

The Python and C++ class definitions for NTC thermistors
enable developers to calculate temperatures from resistance
readings and vice versa. In addition, a class function is
available to apply single-point calibration based on an own
measuring point or NTC with single-calibration data like the
new B57868S0202H. The different classes are available for
download.

1. Hardware setup and circuit 3

2. Resistance-to-temperature conversion 4

2.1 Formula error using the NTC equation 5

2.2 Algorithm based on a 2-point calibration 6

2.3 Algorithm based on Steinhart-Hart equation 7

2.4 Discussion of formula error and lookup tables 8

3. Software-based trimming 9

4. Conclusion 11

References 11

2For further information please contact your local sales office.© TDK Electronics AG 2024

Table of contents

3For further information please contact your local sales office.© TDK Electronics AG 2024

1. Hardware setup and circuit

Digital Readout and Trimming
of NTC Thermistors

Figure 1 shows the example circuit of the development set-up:
An ADS1115 ADC from TI [1] is used on a ready to use module
from Adafruit [2] which has all necessary passives on board.
The ADC is connected to a Raspberry Pi that provides the 3.3
V voltage supply and the I2C interface. The key component for

the circuit is a surface temperature sensor K560 from TDK [3].
Together with the fixed resistor R = 30 kΩ the NTC forms a
voltage divider to provide the analog input for the ADC. K560 is
originally designed for the temperature control of hot plates and
induction hobs from +100 °C to +250 °C.

Figure 1: Evaluation circuit and breadboard wiring using a K560 thermistor probe from TDK for surface temperature sensing, an ADS1115 from TI as 16-bit ADC
connected to a Raspberry Pi 3 via I2C.

K560

R = 30 k

A
D

S
1115

ADDR

AL/RD

SCL

SDA

AIN3

VDD

AIN0

GRD

AIN1 AIN2

SDA

GND

SCL

3.3 V

R
asp

b
erry P

i

Adafruit

Raspberry
Pi GPIO 30 kΩ

K560

ADS1115

TNT0484-G-E

ø4±0.08

ø8±0.2

7±
0.

5

1±
0.

2

25
±2

19
5±

5

22
0±

20

Figure 2: K560 surface temperature probe from TDK. Drawing and values taken
from [3]

R100
Ω

R25
Ω

B25/100
K

B0/100
K

3300 49120 4006 3970 ±2%

Dimensions in mm
Approx. weight 1.8 g

Dimensional drawing

Out RNTC
= =

VNTC

26400 RNTC + R3.3 V

In this application example the K560 will be applied to measure
skin temperature from +30 °C to +45 °C with an accuracy
target of 0.1 K. The high basic resistance of 49.12 kΩ at 25 °C
and the unique shape of the aluminum packaged head make
this NTC an excellent choice for remote surface temperature
sensing (see Figure 2). The typical sensitivity of α = -4%/K
is about ten times higher than those of metals and about five
times higher than those of silicon temperature sensors.

With a PGA setting of “1” the ADS1115 maps a voltage drop
of 4.096 V to a single ended output of 32767 (15 bit) and the
3.3 V supply covers about 26400 counts. The bit-reading
“Out” from the ADS1115 converts to a voltage drop or a NTC
resistance by the following equations:

Other values for the fixed resistor and the gain can be used
to optimize the placement of the measuring range within the
output range. With the given settings the NTC resistance can be
calculated by:

RNTC = R ∙ = R ∙
VNTC

3.3 V - VNTC

Out
26400 - Out

4For further information please contact your local sales office.© TDK Electronics AG 2024

2. Resistance-to-temperature conversion

Digital Readout and Trimming
of NTC Thermistors

The dependence of the NTC resistance on temperature is usually
approximated by the following exponential equation. Note that all
temperatures need to be converted to absolute Kelvin scale for
this calculation:

The B-value is defined by two reference values of temperature
and resistance:

In case of the K560, the rated temperature
TR = +100 °C is used together with the 0 °C value to define the
B0/100-value on the data sheet (see Figure 2):

The datasheet B value together with the rated resistance RR and
rated temperature TR can be used to write a software code for
the resistance to temperature conversion. Figure 3 shows the
code example of a very basic python class definition based on
the inversion of equation 1 :

An instance of the class is initiated with the rated temperature,
the rated resistance and the B-value. The resistance to
temperature conversion can be done with the class function
“temperature”. The following code lines will produce “36.3262”
as output to the screen.

from ntc import NTC_B
k560=NTC_B(100, 3300, 3970)
print(‘%.4f’%k560.temperature(29456))

Figure 3: The very basic NTC Python class using rated temperature, resistance, and B-value to convert resistance read to temperature output in Celsius

##
class NTC_B():
##
The basic NTC class using rated temperature, resistance and B-value
t_val - rated temperature in Celsius
r_val - rated resistance in kOhm
b_val - B-Value of Thermistor in K
temperature() - Converts a resistance res to a temperature in Celsius
##
 def __init__(self, t_val, r_val, b_val):

 self.b = b_val #B-value
 self.r_r = r_val #rated resistance
 self.t_r = t_val #rated temperature

 def temperature(self,res):
 out = math.log(res/self.r_r) / self.b + 1 / (273.15 + self.t_r)
 out = 1 / out - 273.15
 return out
##
#end of class NTC_B
##

B0/100 = 1019.3 K ln () = 3970.16 K
162.213 kΩ

3.3 kΩ

3

2R1
ln ()

T2 ∙ T1

R2T2 - T1

BT1/T2 =

4R
ln ()

1 11

RRTR BT
 = +

1

R(T) = RR ∙ e B ∙
1 1
T TR

(-)

5For further information please contact your local sales office.© TDK Electronics AG 2024

Digital Readout and Trimming
of NTC Thermistors

2. Resistance to temperature conversion

2.1 Formula error using the NTC equation

The approach based on data sheet values of rated resistance
and temperature and B-value is only suitable for a restricted
range around the rated temperature TR with sufficient accuracy.
Figure 4 shows the difference between the actual temperature
and the calculated temperature based on equation 1 that
occurs if B0/100 = 3750 K is used together with the rated
temperature of +100 °C and the rated resistance of 3.3 kΩ to
initiate the NTC class. From +20 °C to +45 °C the calculated
temperature deviates from the actual value by more than 0.5 K
as the rated temperature of +100 °C is too far away from the
range of use.

For practical applications a more precise software modeling of
the real Rnom(T) curve is required. In consequence as a first step
we have to get the real R/T curves! This can be quite a challenge
as many manufacturers only provide such data via their direct
customer support.

TDK has the real Rnom(T) curves available online!
In this case, the TDK online database was used to generate
a detailed table for the specific use case of skin temperature
sensing between +30 °C and +45 °C as shown in Table 1:
The real physical values of Rnom will be used in sections 2.2
and 2.3 to improve the resistance to temperature conversion.
α is the relative sensitivity defined by the relative change of
resistance per temperature interval:

Section 2.4 shows how a values can be used to interpolate
lookup table values. Rmin and Rmax describe the manufacturing
batch variance. Section 3 explains how to deal with such batch
variance by an individual calibration (“software trimming”).

Figure 4: Difference between actual temperature and calculated temperature
based on equation (1)

Temperature [°C]

NTC_B

0 20 40 60 80 100

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

C
al

cu
la

tio
n

fo
rm

ul
a

er
ro

r
[K

]

B57560K0493A001

T [°C] Rnom [kΩ] Rmin [kΩ] Rmax [kΩ] α [%/K]

30 39.517 36.489 42.545 4.3

31 37.864 34.998 40.730 4.3

32 36.290 33.576 39.003 4.2

33 34.789 32.220 37.359 4.2

34 33.359 30.926 35.793 4.2

35 31.996 29.690 34.301 4.2

36 30.696 28.511 32.880 4.1

37 29.456 27.386 31.525 4.1

38 28.272 26.310 30.234 4.1

39 27.143 25.283 29.003 4.1

40 26.065 24.301 27.828 4.0

41 25.035 23.363 26.708 4.0

42 24.052 22.466 25.638 4.0

43 23.113 21.609 24.617 4.0

44 22.215 20.788 23.643 3.9

45 21.358 20.003 22.712 3.9

Table 1: Detailed R/T- values of K560 extracted from the TDK online database [4]

5
α =

1 ∂RNTC

RNTC ∂T

https://www.tdk-electronics.tdk.com/en/180518/design-support/design-tools/ntc-thermistors/ntc-r-t-calculation-5-0

6For further information please contact your local sales office.© TDK Electronics AG 2024

Digital Readout and Trimming
of NTC Thermistors

Figure 5: NTC class using two data points [Ti ; Ri] to calculate a use case specific B-value

##
class NTC_2P():
##
NTC class using two data points [T,R] to calculate a B-Value.
The first point is used to set the rated temperature t_r and resistance r_r
data_tr - Array of 2 datapoints [T,R]
temperature() - Converts a resistance res to a temperature in Celsius
##
 def __init__(self,data_tr):
 # Calculate the B-value inbetween the given datapoints
 self.b = (data_tr[0][0] + 273.15) * (data_tr[1][0] + 273.15)
 self.b = self.b / (data_tr[0][0] - data_tr[1][0])
 self.b = self.b * math.log(data_tr[1][1] / data_tr[0][1])
 self.t_r = data_tr[0][0] # set rated temperature
 self.r_r = data_tr[0][1] # set rated resistance

 def temperature(self,res):
 out = math.log(res / self.r_r) / self.b + 1 / (273.15 + self.t_r)
 out = 1 / out - 273.15
 return out
##
#end of class NTC_2P
##

2. Resistance to temperature conversion

2.2 Algorithm based on a two-point calibration

The main drawback of the basic class function shown in
Figure 3 is the use of a B-value which does not fit the desired
application range. Calculating a more appropriate B-value within
the actual application range using Equation 2 can result in a
significant improvement.

Figure 5 shows an example code that includes the B-value
calculation. The Python class “NTC 2P” receives a pair of
temperature and resistance values [T1;R1] and [T2;R2] to

calculate an interval-specific B-value upon invoking an instance
of the class.

In this particular case two data points for +30 °C and +40 °C
are a good choice. The following code lines will produce
“36.9932” as temperature output.

from ntc import NTC_2P
k560=NTC_2P([[30, 39517], [40, 26065]])print(‘%.4f’%k560.
temperature(29456))

7For further information please contact your local sales office.© TDK Electronics AG 2024

##
class NTC_SH():
##
NTC class using three data points [T,R] to calculate the Steinhart Hart
coefficients. numpy is required for the matrix calculations!
data_tr - Array of 3 datapoints [T,R]
temperature() - Returns a temperature in C as function of resistance

 def __init__(self,data_tr):
 # for recalibration original data_tr must be known:
 self.data_tr = data_tr
 # use inv_t=1/T as internal variable in place of T
 inv_t = np.array([1 / (data_tr[0][0] + 273.15),
 1 /(data_tr[1][0] + 273.15),
 1 /(data_tr[2][0] + 273.15)])
 # use ln_r=ln(R) as internal variable in place of R
 ln_r = np.array([[1,1,1],
 [math.log(data_tr[0][1]),
 math.log(data_tr[1][1]),
 math.log(data_tr[2][1])],
 [math.log(data_tr[0][1]) ** 3,
 math.log(data_tr[1][1]) ** 3,
 math.log(data_tr[2][1]) ** 3]])
 # calculate the Steinhart Hart coefficients
 self.sh = np.matmul(inv_t, np.linalg.inv(ln_r))

 def temperature(self,res):
 out = self.sh[0] + self.sh[1] * math.log(res)
 out = out + self.sh[2] * math.log(res) ** 3
 out= 1 / out - 273.15
 return out
##
#end of class NTC_SH
##

Digital Readout and Trimming
of NTC Thermistors

Figure 6: NTC class using three data points [Ti ; Ri] to calculate the Steinhart-Hart coefficients. NumPy is required for the matrix calculations!

2. Resistance to temperature conversion

2.3 Algorithm based on Steinhart-Hart equation

In 1968, John S. Steinhart and Stanley R. Hart published a
higher order approach for the relation between temperature and
NTC resistance [5].

With three data points from the actual R/T table (1) the
coefficients can be calculated by solving the following linear
equation:

The code example in Figure 6 uses Python’s numerical package
NumPy to calculate the coefficients from three data points of the
R/T curve. In the code package which is provided for download at
TDK NTC design tool pages, an explicit calculation formula is used
to avoid NumPy and to make the code usable for CircuitPython
platforms. C++ implementations are also available for download.

The temperature () function uses equation 6 to calculate the
output. For the application example of skin temperature sensing,
the resistance data at +30 °C, +35 °C and +40 °C was used as
input to the class to calculate the Steinhart-Hart coefficient. The
following lines will produce “36.9997” as temperature output:

from ntc import NTC_SH
k560 = NTC_SH([[30, 39517] ,
[35, 31996] ,[40, 26065]])
print(‘%.4f’%k560.temperature(29456)

6
 = C0 + C1 ln(R) + C3 ln(R)3

1

T

7

 = ∙

1/T1

1/T2

1/T3

C0

C1

C3

1 ln(R1) ln(R1)
3

1 ln(R2) ln(R2)
3

1 ln(R3) ln(R3)
3

8For further information please contact your local sales office.© TDK Electronics AG 2024

Digital Readout and Trimming
of NTC Thermistors

Figure 7: Difference between actual temperature and calculated temperature from the three different algorithms

Temperature [°C]

NTC_2P

NTC_SH

NTC_LT

20 25 30 35 40 45 50

0.06

0.05

0.04

0.03

0.02

0.01

0.00

-0.01

C
al

cu
la

tio
n

fo
rm

ul
a

er
ro

r
[K

]

B57560K0493A001

2. Resistance to temperature conversion

2.4 Discussion of formula error and lookup tables

The models we discussed so far are based on 2 -point NTC_2P
or 3-point NTC_SH) models of the true NTC curve. For wider
temperature ranges or depending on the math-capabilities and
the available memory of the given controller the use of look-up
tables can be an advantage. Instead of two or three points, an
algorithm is built upon multiple [Ti;Ri] points, e.g. with 5 K steps
or even 1 K steps within the operation range. For resistance
readings in between two data points Ri and Ri+1 the T-values
can be extrapolated. For a very detailed R/T table even a linear
interpolation might be suitable:

As an alternative for fewer input points (i.e. 5 K steps) the
α-values 5 from the datasheet or from the TDK online database
can be used. Please note that the α-value is related to the
temperature dependent BTi / Ti+1-value within each interval by:

For a resistance output between Ri and Ri+1 the temperature
calculation can be done by:

The additional class definition is available for download at the
TDK NTC design tool pages. The class NTC_LT() uses a list
of [Ri ,Ti] values and equation 9 and 10 to interpolate between
the list values. Figure 7 shows a comparison of the calculation
error for all three models. The NTC_2P() creates a parabolic
residual calculation error with maximum 0.05 K deviation in the
range +25 °C and +45 °C which is already sufficient for many
applications. Also, the look up table algorithm used by the class
NTC_LT() shows the parabolic error profile in between each of
the supporting points. The Steinhart-Hart model as a higher-
order approximation provides the lowest calculation error but
requires more complicated calculation.

9Ti+1 ∙ Ti Ri

Ti+1 - Ti Ri+1

BTi / Ti+1
 = -αiTi

2
 ; BTi / Ti+1

 = ln ()

10 111 R

BTi / Ti+1
TiT Ri

= + ln ()

8Ti+1 - Ti

Ri+1 - Ri

T(R) = Ti + Ri ≤ R < Ri+1∙ (R - Ri) ;

9For further information please contact your local sales office.© TDK Electronics AG 2024

3. Software-based trimming

Digital Readout and Trimming
of NTC Thermistors

The main drawback in using a temperature probe that was
designed for induction hobs as skin temperature probe is the
manufacturing tolerance (Rmin, Rmax in R/T table 1).
Manufacturing tolerance means that the resistance reading of
one specific probe might deviate from the nominal value but
remains within the minimum to maximum limits. In the case of
K560 the rated resistance RR of 3.3 kΩ has a manufacturing
tolerance of 2.5% and in consequence a temperature tolerance
of 0.9 K at TR = 100 °C.

However, at +36 °C there is already a temperature formula
error of:

For the algorithm in sections 2.2 and 2.3, two and three data
points were used to calculate the relevant coefficients for
equations 4 and 6 respectively. One might now assume that in
consequence, two or three measured points are necessary as
well to eliminate the manufacturing variance. However, this is not
the case. With a single measurement most of the manufacturing
errors can be eliminated. This will be demonstrated with the two-
point method from section 2.2.

The relative resistance tolerance from manufacturing can be
split into contributions from RN and B:

As the NTC_2P() class from section 2.2 calculated a B30/40-value
and we used the reference point [TR ; RR] = [30 °C, 39517 Ω] as
rated resistance, the contribution of B is very small as it scales
with

The idea therefore is to eliminate by a single-point
measurement and reduce the manufacturing tolerance impact
by more than factor 10 from 1.7 K to 0.12 K.

It is easy to extend the code class NTC_2P() by two more
functions to enable calibration. The code for “resistance()” and
“calibration()” is shown in the listing of Figure 8.

The idea is to give the result of an actual temperature and
resistance measurement as input and change the class
parameters in a way, that the actual measured resistance will
become rated resistance and the actual measured temperature
will be the new rated temperature. Of course, the contribution of
ΔRN is still important but will depend only on the accuracy of the
one measurement and not on manufacturing variance anymore.

In the class NTC_2P() only the self.r_r parameter needs to be
changed by the factor Rmeasured /R(Tmeasured), where R(Tmeasured)
is the calculated resistance based on the old parameters. In
the case of the Steinhart-Hart approach in the code class
NTC_SH() the coding is more complicated, as the inversion of
equation 6 requires Cardan’s method and a full recalculation of
all Steinhart-Hart coefficients. It is not re-printed here but TDK
made it available as part of the download package at the TDK
NTC design tool pages.

1 ΔR

α R
ΔT = = ±1.7 K

ΔR ΔBRΔRR ΔRR 1 1

R RRR RR TR T
 = = + + ΔB ∙ (-)

11 11

4%/KTR Tα
 (-)ΔBT = ΔB ∙ =

1 1

303,15 K 306,15
2% ∙ 3950 K ∙ (- K) ≤ ±0.12 K

1 1

TR T
 (-):

ΔRR

RR

Figure 8: Extension for the Python class from section 2.2 to enable one-point trimming

def resistance(self, tem):
calculates the resistance from a given temperature tem in Celsius
 out = self.b * (1 / (tem + 273.15)-1 / (self.t_r + 273.15))
 return self.r_r * math.exp(out)

def calibrate(self, point_tr):
point_tr is a data point of [T(°C),R] used for calibration
 factor = point_tr[1] / self.resistance(point_tr[0])
 self.r_r = self.r_r * factor

10For further information please contact your local sales office.© TDK Electronics AG 2024

Digital Readout and Trimming
of NTC Thermistors

For the calibration measurement it is important that sensor
and reference reach thermal equilibrium. Figure 9 shows how
a stable resistance is reached after approx 1 minute. As a
reference a commercial fever sensor was used. The resistance
reading of the thermistor (30456 Ω) and the temperature
reading of the reference (+36,4 °C) will be used for calibration.

To make single calibration even easier, TDK offers NTC types
with individual resistance data such as the B57868S0202H
type [6]. Actual measured resistance values for the rated
temperature are available for each part as CSV file. This S868
type has a rated temperature of +100 °C and a rated resistance
of 181.55 Ω. The nominal resistance value at +25 °C equals
2000 Ω. Following the example in the datasheet [6] the 7th part
on a delivery strip has an actual measured resistance at +100
°C of RMeas = 181.92 Ω and a correction R-factor of 1.00204.
Single calibration on software level can be done with the
following code:

Figure 9: Example time plot for a calibration measurement

After soft trimming with the following code lines, the K560
circuit output will be in line with the reference:

from ntc import NTC_2P
k560=NTC_2P([[30, 39517], [40, 26065]])
k560.calibrate(36.4, 30456)

from ntc import NTC_2P
s868_7=NTC([[25, 2000], [100, 181.55]])
s868_7.calibrate(100, 181.92)

As an alternative, all necessary resistance values of the nominal
curve can be multiplied by the R-factor (1.00204) and used
directly to initiate the class. One might find this method more
convenient, especially for the NTC_SH and NTC _LT classes:

rfactor_7=1.00204
from ntc import NTC_2P
s868_7=NTC([[25, 2000.0 * rfactor_7], [100, 181.55 * rfactor_7]])

Time [sec]

30456 ±4Ω

R
es

is
ta

nc
e

[Ω
]

200 10 30 40 50 60 70 80

55000

50000

45000

40000

35000

30000

25000

© TDK Electronics AG

Edition 03/2024

www.tdk-electronics.tdk.com

References

[1] Texas Intruments
ADS111x ultra-small, low-power, I2C-compatible,
860-SPS, 16-Bit ADCs
With internal reference, oscillator, and programmable
comparatoor https://www.ti.com/product/ADS1115, 2018.

[2] Adafruit Industries
Adafruit 4-channel ADC breakouts
https://learn.adafruit.com/adafruit-4-channel-adc-break-
outs/downloads, 2020.

[3] TDK Electronics AG
NTC probe assembly K560
https://www.tdk-electronics.tdk.com/inf/50/db/ntc/NTC_
Probe_ass_K560.pdf, 2018 edition.

[4] TDK Electronics AG
 www.tdk-electronics.tdk.com/web/designtool/ntc/
[5] John S. Steinhart and Stanley R. Hart

Calibration curves for thermistors
Deep sea research and oceanographic abstracts,
15(4):497-503, 1968.

[6] TDK Electronics AG
Datasheet of B57868S0202H NTC thermistor

1.) NTC: A simple B-value based calculation and a two-point

definition of R/T curves

2.) NTC_SH: The Steinhart-Hart model with three data points

3.) NTC_LT: a lookup table class using multiple data points

All class definitions include a class function for a single point software

trimming of a given NTC. One code example is included that shows, how

the csv output from NTC R/T calculation 5.0 - web-based application can

be used to define the classes for a specific NTC. A second code example

demonstrates the class usage in a typical circuit with NTC and analog to

a digital converter. All class definitions include a class function for a single

point software calibration to eliminate manufacturing tolerances.

Address and contact info

Dr. Bernhard Ostrick

Product Development

Temperature & Pressure Sensors Business Group

bernhard.ostrick@tdk.com

www.tdk-electronics.tdk.com

DOWNLOAD

Download the software
classes tool here

4. Conclusion

NTC thermistor sensors and probes can easily be integrated in
digital circuits especially for remote sensing.

Signal stability and low power consumption allow an easy
circuit design. The use of actual temperature vs. resistance
tables allows for more exible and accurate software algorithms

than data sheet B-values and rated resistance values.
Manufacturing variance can be reduced by a factor of 10
with single-point measurement and software based trimming.
Python 3 and C++ implementations for all classes were
provided for download at the TDK NTC design tool pages.

Important information: Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge

of typical requirements that are often placed on our products. We expressly point out that these statements cannot be regarded as binding statements about the suitability of our products for a

particular customer application. It is incumbent on the customer to check and decide whether a product is suitable for use in a particular application. This publication is only a brief product survey

which may be changed from time to time. Our products are described in detail in our data sheets. The Important notes (www.tdk-electronics.tdk.com/ImportantNotes) and the product-specific

Cautions and warnings must be observed. All relevant information is available through our sales offices.

https://www.ti.com/product/ADS1115
https://learn.adafruit.com/adafruit-4-channel-adc-breakouts/downloads
https://learn.adafruit.com/adafruit-4-channel-adc-breakouts/downloads
https://www.tdk-electronics.tdk.com/inf/50/db/ntc/NTC_Probe_ass_K560.pdf
https://www.tdk-electronics.tdk.com/inf/50/db/ntc/NTC_Probe_ass_K560.pdf
http://www.tdk-electronics.tdk.com/web/designtool/ntc/
https://product.tdk.com/en/search/sensor/ntc/ntc_element/info?part_no=%20B57868S0202H000
mailto:bernhard.ostrick%40tdk-electronics.tdk.com%20?subject=
http://www.tdk-electronics.tdk.com
https://www.tdk-electronics.tdk.com/en/2988200/design-support/design-tools/ntc-thermistors/ntc-class-definition
https://www.tdk-electronics.tdk.com/en/2988200/design-support/design-tools/ntc-thermistors/ntc-class-definition

