Cold Plasma Technology

piezobrush® PZ3
piezobrush® PZ3 – a handy plasma source

Piezobrush PZ3 is a relyon plasma* product based upon TDK’s CeraPlas technology. Relyon Plasma has been researching surface activation with cold plasma for various applications for years.

Function
- Piezoelectric Direct Discharge technology (PDD®) by low input voltage is transformed to high output voltage
- The ambient process gas (typically air) is dissociated and ionized

Possible applications
- Activation of surfaces by increasing the wettability to optimize adhesive processes such as gluing, printing, coating, varnishing, etc.
- Surface treatment
- Superfine cleaning

Field of application
- Assembly of pre series or small scale production
- Professional model making
- Development and optimisation of production processes in electrical engineering industry
- Research in medical and food industry
- Dental laboratories

* A TDK group company
Device overview and details

- Start/Stop button
- Menu buttons
- Display
- DC socket for plug-in power supply
- Air inlet for integrated fan
- Exchangeable Module with piezo element
- Module release button
piezobrush® PZ2 VS piezobrush® PZ3

<table>
<thead>
<tr>
<th></th>
<th>piezobrush® PZ2</th>
<th>piezobrush® PZ3 professional set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical connection [V / Hz]</td>
<td>110-240 / 50-60, 15 V DC</td>
<td>110-240 / 50-60, 24 V DC</td>
</tr>
<tr>
<td>Power consumption, max. [W]</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Weight [g]</td>
<td>170</td>
<td>110</td>
</tr>
<tr>
<td>Sound level [dB]</td>
<td>57</td>
<td>45</td>
</tr>
<tr>
<td>Plasma temperature [°C]</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>Treatment speed [cm²/s]</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Treatment distance, typ. [mm]</td>
<td>2-10</td>
<td>2-10</td>
</tr>
<tr>
<td>Treatment width, max. [mm]</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>Process control</td>
<td>Not available</td>
<td>Power adjustment; error detection; 3 different types of process control with visual and acoustic feedback</td>
</tr>
<tr>
<td>Interchangeable plasma source</td>
<td>No</td>
<td>Yes via modules</td>
</tr>
<tr>
<td>Ordering Code</td>
<td>Z63000Z2910Z1Z62</td>
<td>B54324D5120A140</td>
</tr>
</tbody>
</table>
piezobrush® PZ3 modules

<table>
<thead>
<tr>
<th></th>
<th>Module “Standard”</th>
<th>Module “Nearfield”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of</td>
<td>Non-conductive substrates / material</td>
<td>Conductive substrates / material</td>
</tr>
<tr>
<td>Material examples</td>
<td>Plastics (PTFE, PE, PA, PP, etc.), glass, ceramics, paper, natural fibres, etc.</td>
<td>Metals (steel, aluminium, alloys, etc.), carbon fibre composites, doped semiconductors, wood, rubber, organic tissue etc.</td>
</tr>
<tr>
<td>Speciality</td>
<td>-</td>
<td>Integrated dielectric barrier at the tip</td>
</tr>
<tr>
<td>Plasma temperature [°C]</td>
<td><50</td>
<td><70</td>
</tr>
<tr>
<td>Treatment speed [cm²/s]</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Treatment distance, typ. [mm]</td>
<td>5-10</td>
<td>0.5-5</td>
</tr>
<tr>
<td>Treatment width, max. [mm]</td>
<td>5-29</td>
<td>10-15</td>
</tr>
</tbody>
</table>
Behind the scenes

Technology

TDK’s CeraPlas element – a piezo based plasma generator in a single component

High voltage generation
- A single piezoelectric component generates high voltage in minimum space
- Vibrating system with mechanically coupled input and output sides for the transformation of low input voltage to high output voltage

Plasma generation
- Electrical discharge due to a local high electrical field
- Dielectric barrier discharge process on output electrode

Surface activation with plasma

Untreated surface: Round droplet
- Low surface energy
- Insufficient wetting
- Weak bonding

Treatment with atmospheric plasma

After plasma treatment: Flat droplet
- High surface energy
- Increased wetting
- Strong bonding
Behind the scenes

Surface activation of polymers
Enhancing adhesion

Untreated surface:
No sites available for chemical bonding
- Low surface energy
- Insufficient wetting
- Weak bonding

After plasma treatment:
Corresponding bonding sites generated
- Generation of anchor groups
- Activation of surface
- Hardly any thermal input

Example effect of surface wettability on printing results

Low surface energy
- Insufficient wetting
- Weak bonding

High surface energy
- Increased wetting
- Strong bonding

Better wetting

θ > 90° θ = 90° θ < 90° θ = 0°
Bonding improvement with cold plasma
A best practice example

Interior door trim
- Initial situation: four individual parts from unfilled PA12 printed by selective laser sintering (SLS)
- Process:
 1. parts activated with cold plasma via piezobrush PZ2
 2. spotted with cyanoacrylate (superglue)
 3. structurally bonded with a two-component adhesive
- Finding: "Using the piezobrush PZ2 now opens up possibilities for bonding individual parts that were previously unthinkable."
 Ralf Deuke, Creabis, June 2019

Motorbike trim
- Initial situation: 12 individual parts using 3D printing
- Process:
 1. parts activated with cold plasma via piezobrush PZ2
 2. spotted with cyanoacrylate (superglue)
 3. structurally bonded with a two-component adhesive
- Finding: Three times stronger bond than without surface activation
- Outcome: The trim installed on the motorcycle can even withstand speeds of over 200 km/h.

Source: https://www.relyon-plasma.com/plasmatechnologie-im-3d-druck/
Wire bonding improvement with cold plasma

Wire bonding

- Initial situation: contaminations on metal surfaces (bond pads) of semiconductor components or carrier materials, which can result in non-stick on pad (NSOP) or so-called “lifts” (elevations of the bonds).
- Process:
 1. fine cleaning with cold plasma via piezobrush PZ2
 2. Wire bonding
- Finding: increased bonding by double times improved shear force and quarter times improved pull force

Increased bonding strength on contact surfaces

Wire bonding of 300 µm Al wire on Battery Samsung “INR21700-50S”

Source: relyon plasma

Pull force average [cN]

Shear force average [cN]

untreated

after treatment with piezobrush PZ2

© TDK Electronics AG • 2020
Product Marketing PI AE/IE • 08/20 • 9
Improvements with cold plasma on pressure sensitive tapes (PST)

Sticking

- Initial situation: example of self-adhesive labels for logos and embellishments to be stylish and to canvass for its respective brand unpeel after time of use.
- Process:
 1. Surface activated with cold plasma via piezobrush PZ2
 2. Sticking of PST on pre-treated surface
- Finding: increased bonding, improved maximum peel strengths and therefore improved durability
- Benefits in assembly process
 - Sustainable process as no chemicals needed
 - Flexible handling with the handheld device

Typical utilization of PST

- Membrane keypads
- Type plate
- Display bond frames
- Self-adhesive labels
- Double sided cliché adhesive tapes (FlexPrint)

Source: relyon plasma
Cold plasma technology

Make use of these cold plasma features

- Sterilize and disinfect medical devices and equipment
 Even neutralization of methicillin resistant Staphylococcus aureus (MRSA)
- Preparation of many materials for improved adhesion
 - FEP bonding (known for the non-stick properties)
 - Connection of PDMS with glass
- Preparation of laboratory supplies for improved wetting
 - Activation of petri dishes

Dental market
Create and sterilize implants

Cold plasma supports by

1. Improving further processing of manufacturing of implants through functionalization
 - Bonding of individual components of different materials
 - Color adaption of implant to natural teeth color
2. Increasing of biocompatibility through optimized wettability
 - Improved acceptance of surrounding tissue
 - Control of homogeneous cell colonization and sterilization
3. Sterilization of surfaces

Source: https://www.relyon-plasma.com
piezobrush® PZ3 professional set

Summary

The world's smallest plasma handheld device with PDD technology®

- Generates highly efficient cold plasma for the optimization of adhesion processes like gluing, printing and bonding
- Use on a variety of materials like plastic, metals, glass, ceramics, semiconductors, natural materials, etc.:
 - Module "Standard" is used for non-conductive materials like plastics
 - Module “Nearfield” is used for conductive materials like metals

Key benefits

- Easy, safe and intuitive plug-and-play technology
- Integrated display for process control and power settings
- Works with air as ambient process gas

Ordering code: B54324D5120A140

<table>
<thead>
<tr>
<th>Design</th>
<th>Handheld unit with plug-in power supply and integrated fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical connection [V / Hz]</td>
<td>110-240 / 50-60</td>
</tr>
<tr>
<td>Power consumption [W]</td>
<td>18</td>
</tr>
<tr>
<td>Plasma temperature [°C]</td>
<td><50</td>
</tr>
<tr>
<td>Weight [g]</td>
<td>110</td>
</tr>
<tr>
<td>Treatment speed [cm²/s]</td>
<td>5</td>
</tr>
<tr>
<td>Treatment distance [mm]</td>
<td>2-10</td>
</tr>
<tr>
<td>Treatment width [mm]</td>
<td>5-29</td>
</tr>
</tbody>
</table>