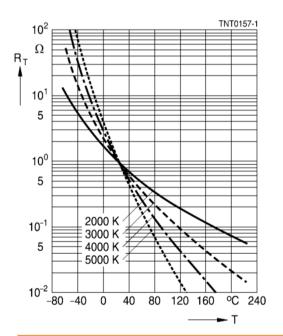


SMD NTC Thermistors


for Temperature Measurement and Compensation in Automotive Applications

EPCOS AG A TDK Group Company Piezo and Protection Devices Business Group Munich, Germany May 19, 2016

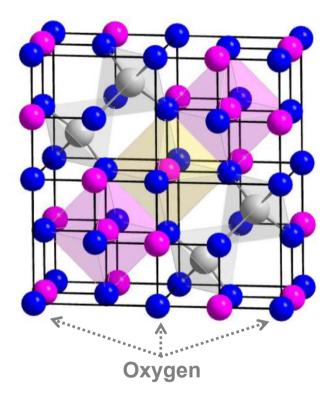
What does ,NTC' mean?

Definition	NTC = <u>N</u> egative <u>T</u> emperature <u>C</u> oefficient
Component	NTC Thermistor

- The resistance of an NTC thermistor decreases exponentially to the temperature (negative R/T curve).
- The R/T curve is non-linear.
- The temperature coefficient a is ~2...6%/K and also temperature depending.
- The B value is used to characterize the R/T curve and is a material constant.
- The maximum power (@25 °C) ranges from mW to MW.

NTC thermistors are simple but very sensitive and accurate sensing elements for measuring and control circuits.

Terms and description


R _R	Rated resistance in Ω of an unstressed thermistor at the rated temperature T_{R} (@ 25 °C)					
R _T	Resistance value in Ω at ambient temperature					
T _R	Rated temperature in Kelvin [K] @ 25 °C (= 298.15 K)					
Т	Ambient temperature in K					
B value	Material-specific constant of NTC thermistor which shows the change in the resistance. Since the B value changes slightly with the temperature, the value of the B constant changes by the defined temperature. It is calculated between two specified ambient temperatures according to the following formula: $B = \frac{T \cdot T_R}{T_R - T} \cdot \ln \frac{R_T}{R_R} = \frac{T \cdot T_R}{T - T_R} \cdot \ln \frac{R_R}{R_T}$					
B _{25/100}	The specifications in the data sheets refer to resistance values at temperatures of 25 $^\circ C$ (T_R) and 100 $^\circ C$ (T)					
B _{25/50} B _{25/50}	Additionally given for information					
X	The temperature coefficient is a rough guide value within a small temperature range in percent per temperature degree (%/K or %/ °C). It is the relative change in resistance referred to the change in temperature (~26%/K): $\alpha = \frac{1}{R_1} \cdot \frac{R_2 \cdot R_1}{T_2 - T_1} = \frac{1}{R_R} \cdot \frac{dR}{dT}$					

R/T calculation

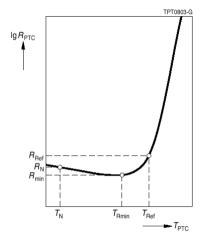
Small temper	ature rar	nge	$\alpha = \frac{1}{R} \cdot$	dR dT			ACY	
Large temperature range			$R_{T} = R_R \cdot e^{B \cdot \left(\frac{1}{T} - \frac{1}{T_R}\right)}$				C U R /	
Steinhart-Har	t equatio	on	$R_T = e^{(a)}$	$a+b\cdot\frac{1}{T}+(c\cdot\frac{1}{T_2})$	$+\left(d\cdot\frac{1}{T_3}\right)+\left(e\cdot\frac{1}{T_4}\right)$		A C	•
	Calculation							> Help
	Calculation			B57332V5103F360 Tem;	perature scaling 'C:		⊙ 1 <u>○</u> 2	> Help ○ 5 ○ 10
Search Ordering Code: b57332	Ordering Code:			B57332V5103F360 Tem	perature scaling *C:		© 1 ⊖ 2	4
Search Ordering Code: b57332	Ordering Code: 1 Temperature Lower limit	-40 *0		-40°C Resi	perature scaling *C: stance tolerance:		⊙ 1 ○ 2 ∆RR 1	4
Search Ordering Code: b57332 Drdering Code: Page 1 of 1 Total items 1	Ordering Code: 1 Temperature	*60 *C		-40°C				0 5 0 10
Search Ordering Code: b57332 Drdering Code: Page 1 of 1 Total items 1	Ordering Code: 1 Temperature Lower limit			-40°C Resi				0 5 0 10
Search Ordering Code: b57332 Drdering Code: Page 1 of 1 Total items 1	Ordering Code: Temperature Lower limt Upper limt			-40°C 150°C			∆ R/R 1 B(25/100) + 3455 [K] ± 1.0%	○ 5 ○ 10 ▼ %
Search Ordering Code: b57332 brdering Code: Page 1 of 1 Total items 1	Ordering Code: Temperature Lower limit Upper limit R/T characteristic = 8509			-40°C 150°C		Δ.Τ [±°C]	∆ R/R 1 B(25/100) = 3455 [K] ± 1.0%	 5 0 10 • % • Calculate
iearch Ordering Code: b57332 rdering Code: Page 1 of 1 Total items 1	Ordering Code: Temperature Lower limit Upper limit R/T characteristic = 8509 Filter by value:	150 *0	C Maximum:	-40°C 150°C R at 25 °C = 10000 [Ω]	stance tolerance:	ΔT [±*C] 0.8	∆ R/R 1 B(25/100) = 3455 [K] ± 1.0% Filter row: J	 5 0 10 • % • Calculate
iearch Ordering Code: b57332 rdering Code: Page 1 of 1 Total items 1	Ordering Code: Temperature Lower limit Upper limit R/T characteristic = 8509 Filter by value: T [*C]	150 ⁺ C R nom [Ω]	C Maximum: R min [Ω]	-40°C 150°C R at 25 °C = 10000 [Ω] R max [Ω]	stance tolerance: Δ R/R [±%]		Δ R/R 1 B(25/100) = 3455 [K] ± 1.0% Filter row: //	 5 0 10 • % • Calculate
earch Ordering Code: b57332 rdering Code: Page 1 of 1 Total items 1	Ordering Code: Temperature Lower limit Upper limit R/T characteristic = 8509 Filter by value: T (*C) -40	R nom [Ω] 190030	C Maximum: R min [0] 181900	-40°C 150°C R at 25 °C ≠ 10000 [Ω] R max [Ω] 188170	stance tolerance: Δ RR [±%] 4.3	0.8	Δ R/R 1 B(25/100) = 3455 [K] ± 1.0% Filter row: // α [%/K] 5.4	 5 0 10 • % • Calculate
iearch Ordering Code: b57332 rdering Code: Page 1 of 1 Total items 1	Ordering Code: Temperature Lower limit Upper limit R/T characteristic = 8509 Filter by value: T [*C] -40 -39 -38 -37	π 150 150 150 150 10030 180000 170550 161650	C Maximum: R min [0] 181900 172410 163470 155040	-40°C 150°C R at 25 °C = 10000 [Ω] R max [Ω] 198170 187590 177540 188270	Δ R/R [±%] 4.3 4.2 4.1	0.8 0.8 0.8 0.8	Δ R/R 1 B(25/100) + 3455 [K] ± 1.0% Fitter row:	 5 0 10 • % • Calculate
Search Ordering Code: b57332 Drdering Code: Page 1 of 1 Total items 1	Ordering Code: Temperature Lower limit Upper limit R/T characteristic = 8509 Filter by value: T [*C] -40 -39 -38	150 *C R nom [Ω] 180030 180000 170550	C Maximum: R min [Ω] 161900 172410 163470	-40°C 150°C R at 25 °C = 10000 [Ω] R max [Ω] 198170 197590 177640	stance tolerance: Δ RR [±%] 4.3 4.2 4.2	0.8 0.8 0.8	△ R/R 1 B(25/100) = 3455 [K] ± 1.0% Fitter row: // G 0 [%/K] 5.4 5.4 5.4 5.4	 5 0 10 * % * Calculate

...simply use our R/T calculation tool under http://en.tdk.eu and go to 'design support/NTC thermistors'.

Physics of NTC ceramics

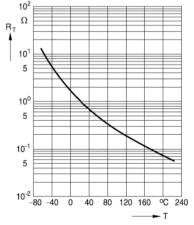
Spinel structure $NiMn_2O_4$ (AB_2O_4) For NTC A places = <u>Ni</u>, (Co, Zn, Al, Fe) – grey B places = <u>Mn</u>, (Ni) - rose

- NTC are polycrystalline (mixed) oxide ceramics.
- The crystal structure is basically a Spinel structure which is formed during the sintering process.
- At high sinter temperatures (~1200 °C) Ni- and Mn-atoms 'share' both A and B places whereby they change their valence.



- A metastable crystal state with both Ni and Mn atoms on A and B-places. Electrons can be exchanged → Hopping conductivity.
- The amount of 'exchanged' electrons increases proportional with the ambient temperature
 → the NTC effect is created.

Comparison of NTC and PTC thermistors


PTC thermistors – Positive temperature coefficient

- A PTC is a limit temperature sensors to protect over temperatures (resp. overcurrent) – no competition to NTC.
- The resistance of an PTC thermistor INCREASES drastically at a specific T_{Ref} (positive R/T curve).
- T_{Ref} and R_N is used to characterize the R/T curve. T_{Ref} is a material constant.
- The temperature coefficient a is ~ 30...50%/K above T_{Ref} (material constant).
- The resistance ranges from some Ω to k Ω .
- Material: Ceramic BaTiO_{3.}

NTC thermistors - Negative temperature coefficient

- A NTC is a simple but very sensitive and accurate sensing elements for measuring and control circuits.
- The resistance of an NTC thermistor DECREASES with increasing temperature (negative R/T curve).
- The B value is used to characterize the R/T curve and is a material constant.
- The temperature coefficient a is $\sim 2...6\%$ /K and also temperature depending.
- The resistance ranges from some Ω to >1 M Ω .
- Material: Ceramic metal oxide.

© EPCOS AG 2016 A TDK Group Company A2 PPD MLV/NTC • 05/16 • 6

SMD NTC Thermistors • Automotive Applications

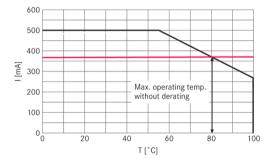
LED: Temperature protection concepts

Fixed resistor

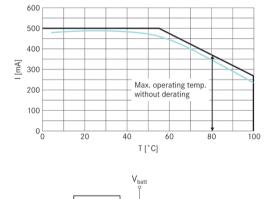
- Low cost solution
- Bad light efficiency
- Change of LED color
- Limited lifetime

PTC

- Medium cost solution
- Better light efficiency
- Change of LED color


IC

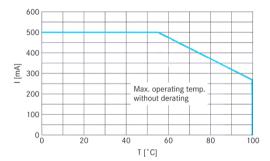
Feedback

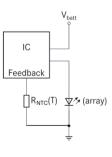

• Limited lifetime

NTC

- Medium cost solution
- Excellent light efficiency
- No change of LED color
- Extension of lifetime
- Optimum design (less number of LEDs)

- Black LED derating curve
- Red The maximum light efficiency is not reached at lower temperatures.
- Green The light efficiency can be increased over a large temperature range.
- Blue Light efficiency = LED derating curve with 1% accuracy

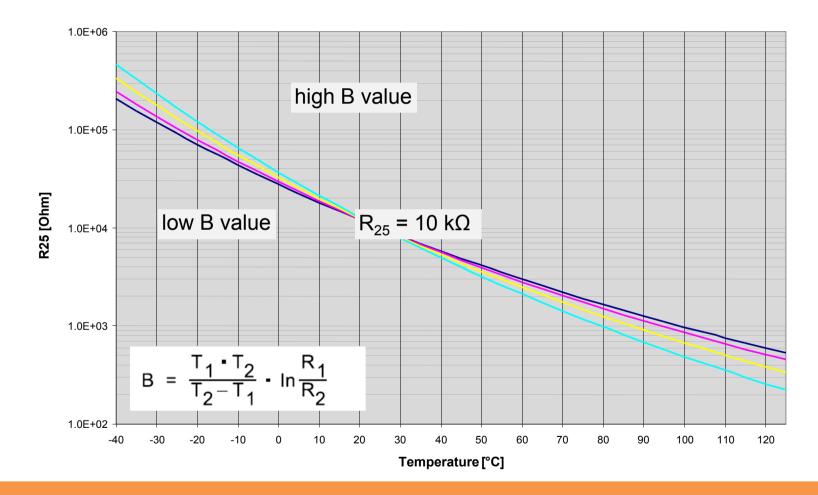


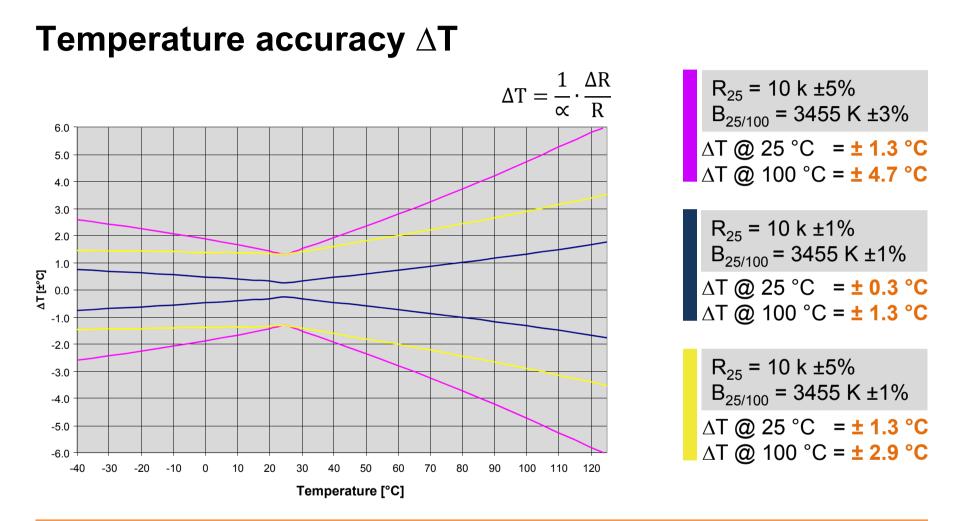

± √ (array)

☐ R_{series}

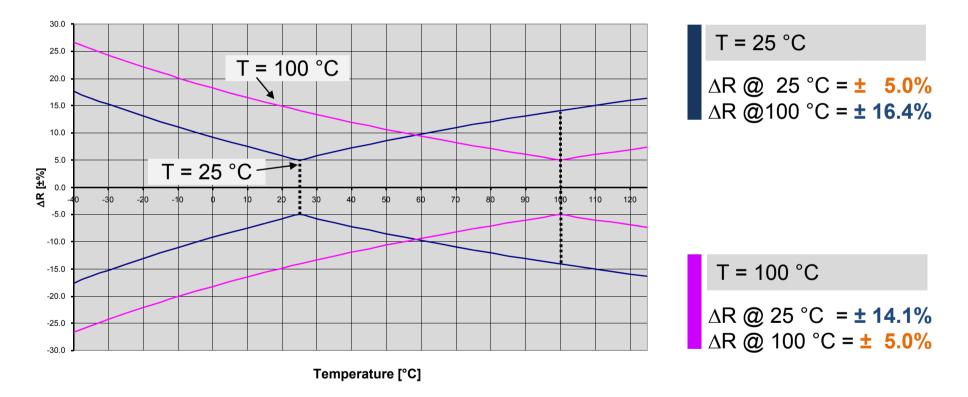
R_{PTC}(T)

R_{parallel}

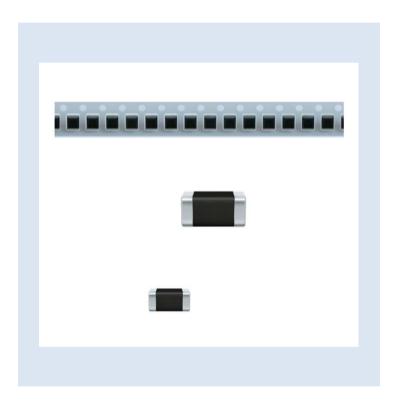



SMD NTC Thermistors • Automotive Applications

Resistance R_T as function of temperature


The higher the B value the steeper the curve the larger the resistance change.

It is important to know the operating temperature range and therefore the tolerance (both R and B value tolerance). With this information the best fitting NTC thermistor can be selected for the application.


Resistance accuracy ΔR

The resistance tolerance is specified for one temperature point, which is usually 25 °C. Upon customer request other temperatures are possible.

How to find the best fitting SMD NTC thermistor

- Which temperature range is needed for the application ?
- What temperature accuracy is needed at which temperature range?
- What is the required resistance and tolerance in which temperature range?
- What are the qualification standards?
- What is the **soldering** process?
- Any customer **specific requirements**?

SMD NTC product overview

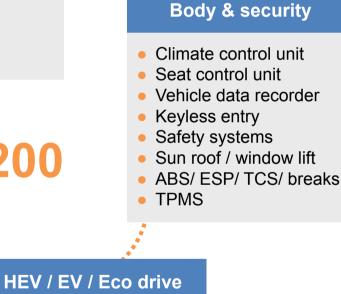
Automotive series (qualified according to AEC-Q200)

EIA	R ₂₅	ΔR _R	B _{25/50}	B _{25/85}	B _{25/100}	ΔB _{25/100}	Ordering code	
case size	[kΩ]	%	[K]	[K]	[K]	%		
0402	4.7	±5 (J)	3940	3980	4000	±3	B57251V5472J060	
0402	10	±1 (F), ±3 (H), ±5 (J)	3380	3435	3455	±1	B57232V5103+360	
0402	10	±5 (J)	3940	3980	4000	±3	B57251V5103J060	
0402	47	±1 (F), ±3 (H), ±5 (J)	4050	4108	4131	±1	B57256V5473+360	NEW!
0402	100	±1 (F), ±3 (H), ±5 (J)	4250	4311	4334	±1	B57254V5104+360	NEW!
0603	10	±1 (F), ±3 (H), ±5 (J)	3380	3435	3455	±1	B57332V5103+360	
0603	10	±3 (H), ±5 (J)	3590	3635	3650	±3	B57342V5103+060	
0603	10	±3 (H), ±5 (J)	3940	3980	4000	±3	B57351V5103+060	
0603	10	±3 (H), ±5 (J)	4386	4455	4480	±3	B57352V5103+060	
0603	22	±3 (H), ±5 (J)	3940	3980	4000	±3	B57351V5223+060	
0603	22	±3 (H), ±5 (J)	4386	4455	4480	±3	B57352V5223+060	
0603	47	±3 (H), ±5 (J)	4386	4455	4480	±3	B57352V5473+060	
0603	47	±1 (F), ±3 (H), ±5 (J)	4050	4108	4131	±1.5	B57356V5473+260	NEW!
0603	47	±3 (H), ±5 (J)	4050	4108	4131	±2	B57356V5473+160	NEW!
0603	100	±1 (F), ±3 (H), ±5 (J)	4200	4260	4282	±1	B57355V5104+360	NEW!
0603	100	±3 (H), ±5 (J)	4250	4311	4334	±2	B57354V5104+160	NEW!
0805	4.7	±3 (H), ±5 (J)	3590	3635	3650	±3	B57442V5472+062	
0805	4.7	±3 (H), ±5 (J)	4386	4455	4480	±3	B57452V5472+062	
0805	10	±3 (H), ±5 (J)	3590	3635	3650	±3	B57442V5103+062	
0805	10	±3 (H), ±5 (J)	3940	3980	4000	±3	B57451V5103+062	
0805	10	±3 (H), ±5 (J)	4386	4455	4480	±3	B57452V5103+062	
0805	33	±3 (H), ±5 (J)	3940	3980	4000	±3	B57451V5333+062	
0805	47	±3 (H), ±5 (J)	3940	3980	4000	±3	B57451V5473+062	+ = resistance
0805	100	±3 (H), ±5 (J)	4386	4455	4480	±3	B57452V5104+062	tolerance

Features

- Accurate temperature sensing up to 150 °C
- Excellent long-term stability
- Qualification based on AEC-Q200, Rev. D

Applications


- Engine control unit
- Display
- Air-condition
- Radiator cooling fan control unit
- Battery pack in conventional, hybrid electric and fullelectric vehicles
- Gear box control
- LED temperature control

All SMD NTC thermistors are listed under UL, file number E69802.

Automotive applications Lighting • Light control unit • Lighting ballast • LED driver/ LED headlight

- Motor control unit
- Oil/ fuel pump
- Engine control
- TCM
- Vehicle control unit
- Top column module
- Power steering

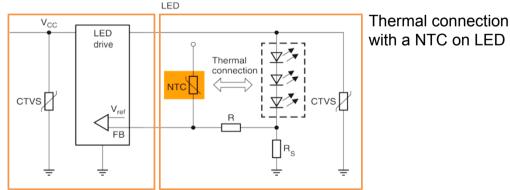
Case size 0402, 0603, 0805 Resistance 4.7 up to 100 kOhm Temperature -40 °C...+150 °C

• Display / navi / radio

Infotainment

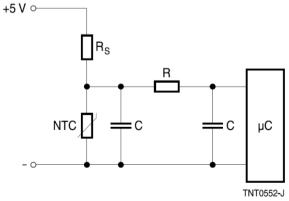
- Driver Info system
- Head set
- Radar
- Intercom system

- Voltage stabilizer
- High voltage battery
- DC/DC converter
- Inverter
- 48-V starter generator


Application example: LED head and rear lights

Function

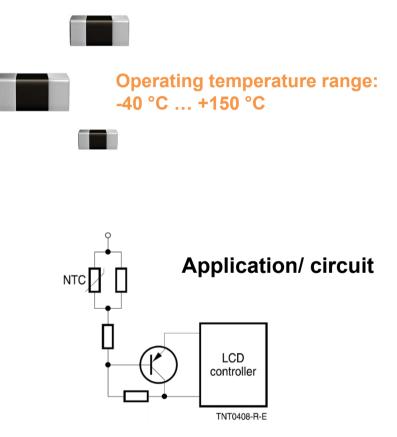
SMD NTC: Avoid high thermal stress of LEDs


- Used in majority of LED headlight applications.
- NTCs are placed on several locations (hot spots).
- Power is regulated from 85 °C to reach the requested life time.
- For the microcontroller an additional NTC is needed because the LED on the PCB is hot than the ECU.
- The LED lifetime is extended if the current through the LED is controlled by using a NTC thermistor as temperature sensor.

Application/ circuit

Practical application for a circuit with NTC thermistor and microcontroller

NTC thermistors are a reliable to avoid high thermal stress of LEDs.



Application example: Displays, e.g. LCD

Function

SMD NTC LCD using a NTC thermistor as temperature sensor

- LCDs are sensitive to temperature and have a limited operating temperature range.
- If a constant voltage is applied to the LCD, the contrast increases with temperature and power is wasted at high temperature.
- Low temperature on the other hand means a low unclear display.
- For these LCD modules often a temperature compensation circuit is used, consisting of NTC thermistors and resistors.
- The thermistor as main temperature-sensitive device with its characteristic resistance temperature curve provides a high driving voltage in the cold and a low
- driving voltage in the hot temperature region, compensating in this way the LCD temperature characteristic.

NTC thermistors provide an accurate temperature sensing up to +150 °C.

SMD NTC development and production

Product range

Piezo and protection devices business group

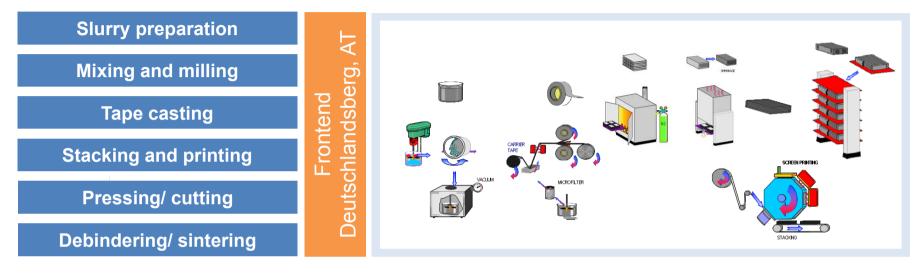
- Multilayer ceramic components
- Piezo actuators

Systems, acoustics, waves business group

- Integrated HF components based on LTCC technology
- Microwave ceramic components
- DSSP packaging technology

Sensors business group

NTC sensor elements



Founded in 1970 71000 m²

Certifications

- ISO 9001
- ISO/TS 16949
- ISO 14001

Process flow in production

SMD NTC Thermistors • Automotive Applications

www.global.tdk.com • www.epcos.com