

SMD NTC Thermistors

Temperature Measurement and Compensation

for General Use

EPCOS AG

A TDK Group Company Piezo and Protection Devices Business Group Munich, Germany May 19, 2016

What does ,NTC' mean?

Definition

NTC = Negative Temperature Coefficient

Component

NTC Thermistor

- The resistance of an NTC thermistor decreases exponentially to the temperature (negative R/T curve).
- The R/T curve is non-linear.
- The temperature coefficient a is ~2...6%/K and also temperature-depending.
- The B value is used to characterize the R/T curve and is a material constant.
- The nominal resistance R_R for NTC ranges from some mW to >1 MW.

NTC thermistors are simple but very sensitive and accurate sensing elements for measuring and control circuits.

Terms and description

 R_{R}

Rated resistance in Ω of an unstressed thermistor at the rated temperature T_R (@ 25 °C)

 R_{T}

Resistance value in Ω at ambient temperature

 T_R

Rated temperature in Kelvin [K] @ 25 °C (= 298.15 K)

Т

Ambient temperature in K

B value

Material-specific constant of NTC thermistor which shows the change in the resistance. Since the B value changes slightly with the temperature, the value of the B constant changes by the defined temperature.

It is calculated between two specified ambient temperatures according to the following formula:

$$B = \frac{T \cdot T_R}{T_R - T} \cdot \ln \frac{R_T}{R_R} = \frac{T \cdot T_R}{T - T_R} \cdot \ln \frac{R_R}{R_T}$$

B_{25/100}

The specifications in the data sheets refer to resistance values at temperatures of 25 $^{\circ}$ C (T_R) and 100 $^{\circ}$ C (T).

B_{25/50} B_{25/50}

Additionally given for information.

 \propto

The temperature coefficient is a rough guide value within a small temperature range in percent per temperature degree (%/K or %/ °C). It is the relative change in resistance referred to the change in temperature (~2...6%/K):

$$\alpha = \frac{1}{R_1} \cdot \frac{R_2 \cdot R_1}{T_2 - T_1} = \frac{1}{R_R} \cdot \frac{dR}{dT}$$

R/T calculation

Small temperature range

$$\alpha = \frac{1}{R} \cdot \frac{\mathrm{dR}}{\mathrm{dT}}$$

Large temperature range

$$R_{T} = R_{R} \cdot e^{B \cdot \left(\frac{1}{T} - \frac{1}{T_{R}}\right)}$$

Steinhart-Hart equation

$$\mathsf{R}_\mathsf{T} = e^{\left(a + b \cdot \frac{1}{T}\right) + \left(c \cdot \frac{1}{T_2}\right) + \left(d \cdot \frac{1}{T_3}\right) + \left(e \cdot \frac{1}{T_4}\right)}$$

...simply use our R/T calculation tool under http://en.tdk.eu and go to 'design support/NTC thermistors'.

Physics of NTC ceramics

Spinel structure NiMn₂O₄ (AB₂O₄) For NTC

A places = \underline{Ni} , (Co, Zn, Al, Fe) – grey

B places = Mn, (Ni) - rose

- NTC are polycrystalline (mixed) oxide ceramics.
- The crystal structure is basically a Spinel structure which is formed during the sintering process.
- At high sinter temperatures (~1200 °C) Ni and Mn atoms 'share' both A and B places whereby they change their valence.

~1200 °C rapid cooling < 900 °C

- A metastable crystal state with both Ni and Mnatoms on A and B places. Electrons can be exchanged → Hopping conductivit-y
- The amount of 'exchanged' electrons increases proportional with the ambient temperature
 → the NTC effect is created.

Comparison of NTC and PTC thermistors

PTC thermistors — Positive temperature coefficient

- A PTC is a limit temperature sensors to protect over temperatures (resp. overcurrent) – no competition to NTC.
- The resistance of an PTC thermistor INCREASES drastically at a specific T_{Ref} (positive R/T curve).
- T_{Ref} and R_N is used to characterize the R/T curve. T_{Ref} is a material constant.
- The temperature coefficient a is ~30...50%/K above T_{Ref} (material constant).
- The resistance ranges from some Ω to $k\Omega$.
- Material: Ceramic BaTiO_{3.}

NTC thermistors — Negative temperature coefficient

- A NTC is a simple but very sensitive and accurate sensing elements for measuring and control circuits.
- The resistance of an NTC thermistor DECREASES with increasing temperature (negative R/T curve).
- The B value is used to characterize the R/T curve and is a material constant.
- The temperature coefficient a is ~2...6%/K and also temperature depending.
- The resistance ranges from some Ω to >1 M Ω .
- Material: Ceramic metal oxide

LED: Temperature protection concepts

Fixed resistor

- Low cost solution
- Bad light efficiency
- Change of LED color
- Limited life time

600 500 400 400 200 Max. operating temp. without derating 100 0 20 40 60 80 100 T [*C]

Black LED derating curve

Red The maximum light efficiency is

not reached at lower temperatures.

Green The light efficiency can be increased over a large temperature range.

Blue Light efficiency = LED derating curve

with 1% accuracy

PTC

- Medium cost solution
- Better light efficiency
- Change of LED color
- Limited life time

NTC

- Medium cost solution
- Excellent light efficiency
- No change of LED color
- Extension of Life time
- Optimum design (less number of LEDs)

Resistance R_T as function of temperature

The higher the B value the steeper the curve the larger the resistance change.

Temperature accuracy △T

$$R_{25}$$
 = 10 k ±5%
 $B_{25/100}$ = 3455 K ±3%

$$R_{25} = 10 \text{ k} \pm 1\%$$
 $B_{25/100} = 3455 \text{ K} \pm 1\%$
 $\Delta T @ 25 °C = \pm 0.3 °C$
 $\Delta T @ 100 °C = \pm 1.3 °C$

$$R_{25} = 10 \text{ k } \pm 5\%$$
 $B_{25/100} = 3455 \text{ K } \pm 1\%$
 $\Delta T @ 25 °C = \pm 1.3 °C$
 $\Delta T @ 100 °C = \pm 2.9 °C$

It is important to know the operating temperature range and therefore the tolerance (both R and B value tolerance). With this information the best fitting NTC thermistor can be selected for the application.

Resistance accuracy ΔR

The resistance tolerance is specified for one temperature point, which is usually 25 °C. Upon customer request other temperatures are possible.

T = 25 °C

$$\Delta$$
R @ 25 °C = ± 5.0%
 Δ R @100 °C = ± 16.4%

How to find the best fitting SMD NTC thermistor

- Which temperature range is needed for the application ?
- What temperature accuracy is needed at which temperature range?
- What is the required resistance and tolerance in which temperature range?
- What are the qualification standards?
- What is the soldering process?
- Any customer specific requirements?

SMD NTC product overview

Standard series

EIA	R ₂₅	ΔR_R	B _{25/50}	B _{25/85}	B _{25/100}	ΔB _{25/100}	Ordering code	
case size	[kΩ]	%	[K]	[K]	[K]	%		
0402	10	±1, ±5	3380	3435	3455	±1	B57230V2103+260	
0402	10	±5	3940	3980	4000	±3	B57221V2103J060	
0402	22	±5	4473	4548	4575	±3	B57261V2223J060	
0402	47	±5	3940	3980	4000	±3	B57221V2473J060	
0402	47	±1, ±3, ±5	4050	4108	4131	±1	B57250V2473+560	NEW!
0402	100	±1, ±3, ±5	4250	4311	4334	±1	B57250V2104+360	NEW!
0603	10	±1, ±5	3380	3435	3455	±1	B57330V2103+260	
0603	10	±3, ±5	3940	3980	4000	±3	B57321V2103+060	
0603	22	±3, ±5	4386	4455	4480	±3	B57371V2223+060	
0603	47	±3, ±5	4386	4455	4480	±3	B57371V2473+060	
0603	47	±1, ±3, ±5	4050	4108	4131	±1.5	B57357V2473+560	NEW!
0603	47	±3, ±5	4050	4108	4131	±2	B57358V2473+560	NEW!
0603	100	±3, ±5	4386	4455	4480	±1	B57374V2104+060	
0603	100	±1, ±3, ±5	4200	4260	4282	±1	B57350V2104+460	NEW!
0603	100	±3, ±5	4250	4311	4334	±2	B57358V2104+460	NEW!
0603	470	±3, ±5	4386	4455	4480	±3	B57371V2474+060	
0805	1	±3, ±5	3940	3980	4000	±3	B57421V2102+062	
0805	10	±3, ±5	3590	3635	3650	±3	B57401V2103+062	
0805	10	±3, ±5	3940	3980	4000	±3	B57421V2103+062	
0805	10	±3, ±5	4386	4455	4480	±3	B57471V2103+062	
0805	22	±3, ±5	4386	4455	4480	±3	B57471V2223+062	
0805	47	±3, ±5	4386	4455	4480	±3	B57471V2473+062	
0805	100	±3, ±5	4386	4455	4480	±3	B57471V2104+062	+ = resistance
0805	470	±3, ±5	4386	4455	4480	±3	B57471V2474+062	tolerance

Features

- Accurate temperature sensing up to +125 °C
- Excellent long-term stability

Applications

- Smart phone
- Wearable device
- Healthcare
- Smart meter
- Engine control unit
- Air-conditioning
- Radiator cooling fan control unit
- Battery sensor
- Industrial automation
- Security and safety
- White good
- Lighting, e.g. LED lighting modules, LED retrofit bulb & tube

All SMD NTC thermistors are listed under UL, file number E69802.

Application examples for SMD thermistors in non-automotive applications

- Household electronics, e.g. refrigerators and deep freezers, washing machines, water boilers
- Heating and air-conditioning e.g. thermostats
- Industrial electronics
- Displays
- Battery packs
- LED lighting

EPCOS does offer a broad portfolio of NTC thermistors which can be found in every application.

Application example: Thermostat

Function

- SMD NTC EIA 0402 ... 0603 1% tolerance High accuracy temperature measurement
- Proposed types
 - \neg B57230V2103F260, EIA 0402 10 k Ω ±1%, 3455 K ±1%
 - \neg B57330V2103F260, EIA 0603 10 kΩ ±1%, 3455 K ±1%

Application/ circuit

Operating temperature range: -40 °C ... +125 °C

Battery package and charger

Function

SMD NTC

Battery pack using NTC thermistors

- Detects temperature rises of the battery cell during charging.
- Detects the ambient temperature for optimized charging.
- Detects heat generation of a battery cell caused by abnormal current.
- Performs temperature compensation for voltage measurement for display of the remaining amount of energy.

Charging control unit of a battery pack using NTC thermistors as temperature sensor

Typical schematic

Application example: Displays, e.g. LCD

Function

SMD NTC

LCD using a NTC thermistor as temperature sensor

- LCDs are sensitive to temperature and have a limited operating temperature range.
- If a constant voltage is applied to the LCD, the contrast increases with temperature and power is wasted at high temperature.
- Low temperature on the other hand means a low unclear display.
- For these LCD modules often a temperature compensation circuit is used, consisting of NTC thermistors and resistors.
- The thermistor as main temperature-sensitive device with its characteristic resistance temperature curve provides a high driving voltage in the cold and a low.
- driving voltage in the hot temperature region, compensating in this way the LCD temperature characteristic.

NTC thermistors provide an accurate temperature sensing up to +125 °C.

Temperature protection of LEDs with NTCs

Why controlling the LED junction temperature?

Advantage

- No change of color
- No reduction of lumens
- Extension of lifetime
- Performance efficiency optimization
- Optimum design (reduction number of LEDs)

Function

- Over temperature sensing for LED driver
- The resistance of an NTC thermistor decreases with increasing temperature (negative R/T curve).
- The R/T curve is non-linear.
- The temperature coefficient a is ~2...6%/K and also temperature depending.
- The B value is used to characterize the R/T curve and is a material constant.
- The maximum power (@25 °C) ranges from mW to MW.

NTC = Negative temperature coefficient

NTC thermistors are simple but very sensitive and accurate sensing elements for measuring and control circuits.

Optimization of LED efficiency with NTCs

By high accurate temperature sensing

Task of NTC

Control optimum junction temperature T_{iun} for max. lumen/ watt & lifetime

With a NTC T_{iun} can be reduced

→ Higher temperature with higher lifetime possible

Example: High power LED module

Accuracy of the LED thermal management can be strongly optimized using an NTC sensor for the control of the module temperature.

→ LED array can be driven very close to the derating temperature.

Benefits

Increase of efficiency by 5% / 10 K higher driving temperature

- Strong cost impact, reduction of LEDs
- Increase of lifetime

SMD NTC development and production

Product range

Piezo and protection devices business group

- Multilayer ceramic components
- Piezo actuators

Systems, acoustics, waves business group

- Integrated HF components based on LTCC technology
- Microwave ceramic components
- DSSP packaging technology

Sensors business group

NTC sensor elements

Founded in 1970 71000 m²

Certifications

- ISO 9001
- ISO/TS 16949
- ISO 14001

Process flow in production

Slurry preparation

Mixing and milling

Tape casting

Stacking and printing

Pressing/ cutting

Debindering/ sintering

Frontend Deutschlandsberg, AT

Glass-coating process

Burn-in of glass coating

Ag metalization

Burn-in of termination

Electroplating of Ni/Sn

Measuring and taping

Backend Kutina, HRV

www.global.tdk.com • www.epcos.com